Даны вершины пирамиды A(3;-2;3)B(-1;0;2)C(-3;1;-1)D(-3;-3;1) .
Находим векторы АВ, АС и АД.
Вектор АВ = (-4; 2; -1 ), модуль равен √(16+4+1) = √21 ≈ 4,58258.
Вектор АC={xC-xA, yC-yA, zC-zA} = (-6; 3; -4) =√61 ≈ 7,81025.
Вектор АD={xD-xA, yD-yA, zD-zA} = (-6; -1; -2) = √41 ≈ 6,40312.
Определяем векторное произведение АВ х АС.
i j k | I j
-4 2 -1 | -4 2
-6 3 -4 | -6 3 = -8i + 6j - 12k - 16j + 3i + 12k = -5i - 10j = (-5; -10; 0).
Далее находим смешанное произведение (АВ х АС) х АД.
(АВ х АС) = (-5; -10; 0),
АD = (-6; -1; -2),
(АВ х АС) х АД = 30 + 10 + 0 = 40.
Объем пирамиды равен (1/6) этого произведения:
V = (1/6)*40 = (20/3) куб.ед.
Высота h пирамиды ABCD, опущенная из вершины D на плоскость основания ABC, равна: h = 3V/S(ABC).
Площадь основания АВС равна половине модуля векторного произведения АВ х АС.
S(ABC) = (1/2)*√((-5)² + (-10)² + 0²) = (1/2)√(25 + 100) = (5/2)√5 кв.ед.
h = (3*20/3)/((5/2)√5) = 8/√5 = 8√5/5 ≈ 3,5777.
2, 25 + 1, 75 + 0, 2 + 3, 5 = 7, 7
1.
1) 15 минут = часа = 0, 25 часа
2)2 часа = это 2 части (оставляем без изменения.)
3)2 часа 15 минут = 0, 25 + 2 = 2, 25 часа
2.
1)45 минут = часа = 0, 75 часа
2)1 час = это 1 часть (оставляем без изменения.)
3)1 час 45 минут = 0, 75 часа + 1 = 1, 75 часа
3.
1)12 минут = = 0, 2 часа
4.
1)30 минут = часа = 0, 5 часа
2)3 часа = это 3 части (оставляем без изменения.)
3)3 часа 30 минут = 0, 5 + 3 = 3, 5 часа
5.
2 часа 15 минут + 1 час 45 минут + 12 минут + 3 часа 30 минут = 2.25 часа + 1,75 часа + 0.2 часа + 3.5 часа = 7, 7 или же 7 часов 42 минуты
270 /660
270
370
0