ПРИМЕР №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти:
1) grad z в точке A; 2) производную данной функции в точке A в направлении вектора a.
z=5x²*y+3xy²
Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
grad(z)=(10xy+3y²)i+(5x²+6xy)j
Найдем градиент в точке А(1;1): grad(z)A=(10·1·1+3·1²)i+(5·1²+6·1·1)j или grad(z)A=13i+11j
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(6;-8).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.
ПРИМЕР №2. Даны z=f(x; y), А(х0, у0).
Найти а) градиент функции z=f(x; y) в точке А.
б) производную в точке А по направлению вектора а.
ПРИМЕР №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2).
z = ln(sqrt(x^2+y^2))+2^x
Решение.
Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем производную в точке А по направлению вектора а(1;2).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.
ПРИМЕР №4. Дана функция . Найти:
1) gradu в точке A(5; 3; 0);
2) производную в точке А в направлении вектора a=i-2j+k.
Решение.
1. .
Найдем частные производные функции u в точке А.
;;
, .
Тогда
2. Производную по направлению вектора a в точке А находим по формуле
.
Частные производные в точке А нами уже найдены. Для того чтобы найти cos α, cos β, cos γ, найдем единичный вектор a0 вектора a.
, где .
Отсюда .
ПРИМЕР №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a.
Решение.
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(2;-5).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.
Решение: ... /*3
... /*5
1. домножим первое у-е на 3 второе на 5
15х1+21х2=105
-15х1+25х2=75
2. первое ур-е переписываем , а вместо второго записываем сумму первого и второго
15х1+21х2=105
21х2+25х2=105+75
3.первое ур-е переписываем , второе решаем
15х1+21х2=105 /:3
46х2=180 /:2
4.первое ур-е переписываем разделённым на 3 обратно , второе тоже самое только на 2 поделили обе части
5х1+7х2=35
23х2=90
5. в первое ур-е подставляем х2 ,
5х1+7*90/23=35 /:5
х2=90/23
6,первое ур-е решаем , второе переписываем
х1+7*18/23=7
х2=90/23
6,первое ур-е решаем , второе переписываем
х1=7 -7*18/23
х2=90/23
7.6,первое ур-е решаем приводим к общему знаменателю левую часть , второе переписываем
х1=7*23/23 -7*18/23
х2=90/23
8. в первом уравнении вынесли в левой части в числителе 7 (23*18)
х1= 7*(23-18)/23
х2=90/23
9.
х1=7*5/23
х2=90/23
10
х1=35/23
х2=90/23
2)300-250=50кг-осталось.