В параллелограмме ABCD биссектрисы углов B и C пересекаются в точке M, лежащей на стороне AD.
Найдите площадь параллелограмма ABCD, если BM=9, BC=15
---------------
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180º ( углы при параллельных прямых и секущей).
Cумма половин этих углов в ∆ СМВ равна 180º:2=90º, ⇒
∠СМВ=180º-90º= 90º.
В ⊿ СМВ отношение катета ВМ и гипотенузы СВ равно 3:5, из чего следует, что ⊿ СМВ–египетский, и СМ=12 ( можно проверить по т.Пифагора).
S ⊿ СМВ=СМ•BM:2=12•9:2=54
Биссектриса СМ отсекает от АВСD равнобедренный треугольник CDM ( накрестлежащие углы равны половине угла ВСD)⇒ СD=МD
На том же основании ∆ МАВ равнобедренный и АМ=АВ
Но СD=АВ ⇒ DM=AM, и стороны СВ и AD равны по 2 АВ.
Проведем МК || СD|| АВ. МК - медиана ⊿ СМВ и делит его на равные по площади треугольники.
В четырехугольниках СКМD и МКВА стороны равны и параллельны,⇒ они - ромбы.
Площадь каждого ромба равна площади ⊿ СМВ ( состоит из 2-х равных по площади половин ⊿ СМВ).
S ABCD=2S СМВ=2•54=108 (ед. площади).
В параллелограмме ABCD биссектрисы углов B и C пересекаются в точке M, лежащей на стороне AD.
Найдите площадь параллелограмма ABCD, если BM=9, BC=15
---------------
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180º ( углы при параллельных прямых и секущей).
Cумма половин этих углов в ∆ СМВ равна 180º:2=90º, ⇒
∠СМВ=180º-90º= 90º.
В ⊿ СМВ отношение катета ВМ и гипотенузы СВ равно 3:5, из чего следует, что ⊿ СМВ–египетский, и СМ=12 ( можно проверить по т.Пифагора).
S ⊿ СМВ=СМ•BM:2=12•9:2=54
Биссектриса СМ отсекает от АВСD равнобедренный треугольник CDM ( накрестлежащие углы равны половине угла ВСD)⇒ СD=МD
На том же основании ∆ МАВ равнобедренный и АМ=АВ
Но СD=АВ ⇒ DM=AM, и стороны СВ и AD равны по 2 АВ.
Проведем МК || СD|| АВ. МК - медиана ⊿ СМВ и делит его на равные по площади треугольники.
В четырехугольниках СКМD и МКВА стороны равны и параллельны,⇒ они - ромбы.
Площадь каждого ромба равна площади ⊿ СМВ ( состоит из 2-х равных по площади половин ⊿ СМВ).
S ABCD=2S СМВ=2•54=108 (ед. площади).
1) 5, 5 * 0,8 = 4,4 (км) - расстояние от Заречной до Мухино
2) 12,5 * 1,4 = 17,5 (км) - расстояние от Мухино до Каменки.
3) 17, 5 - 4,4 = 13,1 (км)
ответ: на 13,1 км Мухино дальше от Каменки, чем от Заречной.
Задача № 2
Измерения I A I Б I B I Г
Объём = (а*б*с) см^3 283,2 282 1,43514 8,33796
Площадь поверхности
2(а*б + с*а + б*с) см^2 284, 8 330,1 9,3038 14, 7713
Сумма длин рёбер
4(а + б + с) см 87,6 24,6 16,16 29,04