Ваша задача равносильна неравенству: (x^2-3*x+2)/(x3-5*x^2+4*x) < 0,
Разложим на множители:
((х-1)*(х-2))/(x*(x-1)*(x-4)) < 0.
Определяем ОДЗ: х ≠ 0 U x ≠ 1 U x ≠ 4. (При решении методом интервалов, эти точки будут "выколотыми", т. к в этих точках функция имеет разрыв.
Ни один сомножитель в знаменателе не равен нулю. Поэтому неравенство не изменится, если мы умножим его на x^2*(x-1)^2*(x-4)^2, тогда получается:
х*(х-1)^2*(х-2)*(х-4) < 0.
Отмечаем на числовой оси точки х=0, х=1, х=2, х=4, не забываем, что точки х=0, х=1 и х=4 - выколоты. Рисуем "змейку". При х > 4, значение функции положительно, в интервале (2; 4) = отрицательно, в интервале (1; 2) - положительно. Точка х=1 входит дважды, поэтому знак "змейки" не меняем, т. е в интервале (0; 1) значение функции остается положительным, левее точки х=0 - значение функции отрицательно.
Решение: (-∞; 0) U (2; 4).
Формула Эйлера для многогранников.
Пусть В — число вершин выпуклого многогранника, Р — число его ребер и Г — число граней. Тогда верно равенство В+Г=Р+2.
Октаэдр - многогранник с 8 гранями. (Грани- треугольники)У него 6 вершин и 12 ребер.
8+6=12+2. Формула Эйлера верна.
Додекаэдр - многогранник, состоящий из граней- пятиугольников.Этих граней 12.У него 30 ребер и 20 вершин.
20+12=30+2 Формула Эйлера верна.
Икосаэдр - многогранник, состоящий из 20 граней-треугольников.
У него также, как и у додекадра,
30 ребер и 20 вершин.
20+12=30+2 Формула Эйлера верна.