Перепишем уравнение в другом виде:
169,96
= 60,7
2,88 : (5,4х - 1,67)
Это выражение дает нам возможность упростить его еще:
169,96 2,88
: = 60,7
1 5,4х - 1,67
Воспользовавшись правилом деления дробей, получаем:
169,96 5,4х - 1,67
* = 60,7
1 2,88
Сокращаем числитель первой и знаменатель второй дроби. В результате имеем:
59,01 * (5,4х - 1,67) = 60,7
Умножаем 59,01 на каждое число в скобке, в результате имеем:
318,65х - 98,55 = 60,7. Отсюда
318,65х = 60,7 + 98,55
318,65х = 159,25
х = 159,25/318,65
х=0,5
Во-первых, заметим, что ребро такого куба состоит из четырех кубиков, его длина, ширина и объем равен 4 ребрам маленьких кубиков.
В конструкции большого куба есть кубики четырех видов. Рассмотрим каждый отдельно.
1. Угловые. Таких кубиков всего восемь, они расположены по углам большого куба. Они имеют общую грань только с тремя кубиками, ведь их остальные грани обращены наружу.
2. Края. Это кубики, составляющие ребро большого куба. Две из их граней обращены наружу, а четыре граничат с другими кубиками. Таких кубиков на каждом ребре большого куба две штуки (остальные два кубика на ребре являются угловыми). А всего ребер 12. Выходит, таких кубиков в большом кубе 24.
3. Эти кубики составляют поверхность граней большого куба. Одна из их граней обращена наружу, а пять являются общими с другими кубиками.
4. Внутренние кубики. Они находятся внутри большого куба и имеют общую грань с шестью кубиками.
В итоге по условию нам подходят третий и четвертый вид. Теперь нужно сосчитать, сколько же таких кубиков. Для этого можно вычесть из общего числа кубиков (64) кубики 1 вида (их 8) и второго вида (их 24). Получается 32.
ответ: 32
х =
х = 3 + (
х = 3 +
х = 3
-
-0,48у = 0,3
у = -0,625