Пошаговое объяснение:
Подставляем значения всех возможных выражений в уравнения.
1366:
1)x+y-2=0
a) (-1;3)
-1+3-2=-3+3=0
б) (-8;6)
-8+6-2=-10+6=-4
Не подходит.
ответ (-1;3)
2)2x+y-4=0
a) (0,5;3)
2*0,5+3-4=4-4=0
б) (-3;2)
2*(-3)+2-4=-10+2=-8
Не подходит.
ответ: (0,5;3)
1367
1)2x+y-6=0
a) (3;0)
6-6=0
б) (4;-2)
8-2-6=0
в) (5;-2)
10-2-6=2
Не подходит.
г) (-1;8)
-2+8-6=0
ответ: (3;0), (4;-2), (-1;8)
2)5x-2y-8=0
а) (2;1)
10-2-8=0
б) (-3;-11,5)
-15+11,5-8=-11,5
Не подходит.
в) (-1;6)
-5-12-8=-25
Не подходит.
г) (3;3,5)
15-7-8=0
ответ: (2;1), (3;3,5)
ответ: а) 4/91, б) 0, в) 53/65
Пошаговое объяснение:
а) Будем извлекать по одному фрукту. Вероятность того, что первым вынуто яблоко
Р₁ = 6/(6 + 9) = 2/5. Вероятность того, что вторым извлечено яблоко
Р₂ = 5/(5 + 9) = 5/14. Третьим — Р₃ = 4/(4+9) = 4/13. Полную вероятность найдём по формуле умножения вероятностей: Р = Р₁·Р₂·Р₃ = 2·5·4/(5·14·13) = 4/91 ≈ 0,044
б) В данном случае нужно найти вероятность того, что извлекли 2 фрукта. Но известно, что извлекли 3 фрукта. События несовместны, вероятность Р = 0
в) Найдём вероятность того, что не извлечено ни одного яблока. По аналогии с задачей в пункте а), полная вероятность ¬Р равна:
¬Р = 9·8·7/(15·14·13) = 36/(15·13) = 12/65
Тогда вероятность того, что достали хотя бы одно яблоко Р равна:
Р = 1 − ¬P = 53/65 ≈ 0,815
ответ: а) 4/91, б) 0, в) 53/65
612+149=761(ед.)-2 класса
204+28=232(ед.)-1 класса