ответ:
всего двузначных чисел: 99-9=90 (от наибольшего двузначного числа отнимаем количество однозначных чисел)
если число четное и кратное 3, (то есть делится на 2 и на 3) то оно делится на 2*3=6
не трудно догадаться, что наименьшее такое число: 12
наибольшее: 96
чтобы без перебора узнать, сколько таких чисел (n), воспользуемся свойствами арифметической прогрессии:
a_n=a_1+(n-1)*d \\ \\ a_n=96 \\ a_1=12 \\ d=6 \\ \\ 96=12+(n-1)*6 \\96=12+6n-6 \\ 6n=90 \\ \\ n=\frac{90}{6}= 15
ну и наконец, чтобы найти вероятность выбора этого числа, нужно число благоприятных исходов поделить на число всех исходом (то есть "количество четных двузначных чисел кратных 3" поделить на "количество двузначных чисел")
p=\frac{15}{90}=\frac{1}{6} \\ \\ otbet: \ \frac{1}{6}
ответ: дальность броска француза составляет 66% от броска американца.
Если обозначить дальность броска американца за х. Тогда дальность броска русского равна 1,13х (по задаче).
Теперь нужно найти дальность броска немца (дальность броска русского делим на 1,21, так как бросок русского составляет 121% от броска немца):
1,13х : 1,21 = (113/121)x.
Теперь находим дальность броска француза (умножаем дальность броска немца на 0,71, так как дальность броска француза составляет 71% от броска немца):
(113/121)х * 0,71 = (8023 / 12100)x = 0.66305785124...
Теперь сравниваем дальность броска американца и француза:
Американец: 1х; 100%.
Француз: 0.66305785124 ... х; ≈ 66%.
Следовательно, дальность броска француза составляет 66% от броска американца.
1)S1=S2 или a1*b1=a2*b2
2)P=2*a1+2*b1
подставляем во вторую формулу
28см=2*8см+2*b1
16+2*b1=28
2*b1=12
b1=6 (см)- ширина первого прямоугольника.
подставляем в первую формулу
a1*b1=a2*b2
8см*6см=a2*5см
a2=48/5
a2=9,6 (см)- длина второго прямоугольника.
ответ: 9,6 см.