Вчисловой последовательности первое число равно 2/9 а каждое следующее в 1 целую 1/2 раза больше предыдущего. запишите первые пять чисел этой последовательности. тут
В правильном тетраэдре все рёбра равны, а грани - правильные треугольники. Примем длины рёбер равными 1. Высота Н правильного тетраэдра равна √(2/3). Высота точки К от плоскости АВС равна половине Н, то есть √2/(2√3).
Перенесём прямую KL точкой L в точку С и соединим отрезком точку К с точкой С1. Получим треугольник СК1С1. Проекция на плоскость АВС отрезка К1С равна проекции KL. Проекция точки К на АВС (пусть это точка К2) делит медиану (она же и высота) AL от точки А в отношении 1:2. AL = √3/2. K2L = (2/3)*(√3/2) = √3/3. Проекция К2L на СС1, как катет против угла в 30 градусов, равна (1/2)*√3/3 = √3/6. Находим длину KL. KL = √((K2L)² + (K2K)²) = √((√3/3)² + (√2/(2√3))²) = √((3/9) + (2/12)) = 1/√2. Теперь можно определить косинус угла α = К1СС1 (он же угол между KL и CC1): cos α = (√3/6)/(1/√2) = √6/6.
ответ: угол между прямой KL и высотой CC1 треугольника ABC равен 3) arccos √6/6.
2)2/9*1 1/2=1/3
3) 1/3*1 1/2=1/2
4) 1/2*1 1/2=3/4
5) 3/4*1 1/2=9/8=1 1/8
6) 1 1/8*1 1/2=27/16=1 11/16