Окей, постараюсь это решить в рамках седьмого класса. Буду оперировать следующими утверждениями:
1. Напротив угла в 30° лежит катет, равный 1/2 гипотенузы.
2. Сумма углов треугольника равно 180°
3. Сумма смежных углов равна 180°
4.
1) Для начала найдем все углы. Рамс. △PRS и △RSQ
<PRS = 30° (утв. 2) >
===> <QRS = 90 - 30 = 60
<S = 90° (утв. 3)
<Q = 180 - (90 + 60) = 30° (утв. 2)
2) Теперь ищем стороны.
<PRS = 30° > RP = 18 * 2 = 36 (утв. 1)
<Q = 30° > PQ = 2RP = 72 (утв. 1)
! SQ = PQ - PS = 72 - 18 = 54 !
6.
1. Снова ищем углы.
Из чертежа понятно, что ST - биссектриса. (<PST = <MST)
<SFT = 180 - 90 = 90 (утв. 3)
△PST = △FST (по двум углам и стороне)
У равных треугольник равны соответственные углы и стороны
! TF = PT = 26 !
Все) Дай лучшего, если не сложно.
p.s. извини за задержку, пришлось отвлечься. Кстати, когда ты сказал, что это седьмой, я уже все почти решил) Было обидно стирать...)
1) Для любого х из множества действительных чисел существует у, меньше х такие, что значение функции в точке у равно нулю.
2) Для любого х из множества действительных чисел, значение эф от икс равно нулю существует у, меньше х и значение функции в точке у равно нулю.
3)Для любого х из множества действительных чисел,из того, что значение эф от икс равно нулю, следует, что икс больше нуля.
4) Для любого х из множества действительных чисел, таких, что если икс положительно, то эф от икс равно нулю.
5) Существует х из множества действительных чисел, такое, что для любого у из множества действительных чисел, при котором у меньше икс и из этого следует, что значение эф от игрек равно нулю.
6)из того, что существует действительные а и b такие, а меньше b, для любого х больше а, но меньше b, следует то, что значение функции в точке икс равно нулю.
7) Для любых а и b из множества действит. чисел , таких что а меньше b, следует что существует х, больше а, но меньше b, что эф от икс равно нулю.
8) Для любых x 1 ,..., xn из множества действительных существyет у из множества действительных чисел без множества { x1,...,xn } таких, что значение эф от у равно нулю. (эн - очевидно, натуральное.)
9)Для любого натурального n и набора x1,...,xn из множества действительных существует у из множества действит. без {x1,...,xn} такие что значение эф в точке у равно нулю.
10) для любых действительных x и y значение функции ( f (x)равно нулю 0 и g (y) =0 и из этого следует , что х меньше у.
11) Из того, что для любых действительных x и y, для которых значение x меньше значения y и и значение функции эф от икс равно 0 и и эф от у равно нулю следует, что существует действительное z болше х, но меньше у, и значение функции g (z) равно нулю.
x=-96/32=-3