Объем фигуры, образованной в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной непрерывной кривой y = f(x) (a ≤ x ≤ b), Осью Ox и прямыми x= a и x = b, вычисляется по формуле:
Аналогично, объем фигуры, образованной в результате вращения вокруг оси Oy криволинейной трапеции, ограниченной непрерывной кривой y = φ(x) (c ≤ x ≤ d), Осью Ox и прямыми y= c и y = d, находится по формуле:
ПРИМЕР №1. Вычислить объемы фигур, образованных вращением площадей, ограниченных указанными линиями.
y2 = 4x; y = 0; x = 4.
Пределы интегрирования a = 0, b = 4.
ПРИМЕР №2. y2 = 4x; y = x
Выполним построение фигуры. Решим систему:
y2 = 4x
y = x
найдем точки пересечения параболы и прямой: O(0;0), A(4;4).
Следовательно, пределы интегрирования a = 0; b = 4. Искомый объем представляет собой разность объема V1 параболоида, образованного вращением кривой y2 = 4x , и о объема V2 конуса, образованного вращением прямой y = x:
V = V1 – V2 = 32π – 64/3 π = 32/3 π
см. также как вычислить интеграл онлайн
ПРИМЕР №3. Вычислить объем тела, полученного вращением вокруг оси Оx фигуры, ограниченной прямой y=x и параболой .
Найдем точки пересечения линий. Для этого решим уравнение . Получим x1=0, x2=1.
Рис. 2. Объем тела вращения.
Объем тела может быть вычислен по формуле , где
, f2(x)=x.
.
ответ: .
см. также Площадь фигуры, ограниченной линиями: Площадь фигуры, ограниченной линиями
Пошаговое объяснение:
Скорость 1-го-260 м/мин
скорость 2-го- ? м/мин
Расстояние-15 км=15 000 м
время-30 мин
1) 260х30=7800 м
2)15 000-7800=7200 м
3)7200:30=240 м/мин- скорость второго
Два велосепедиста отправились из одного посёлка одновременно в противоположных направлениях. Через 30 минут расстояние между ними стало 15 км.Средняя скорость одного из них 240 м/мин. Узнай среднюю скорость другого велосепедиста?
скорость 1-го-240 м/мин
скорость 2-го-? м/мин
Время 30 мин
расстояние-15 км=15 000м
1)30х240=7200 м
2)15000-7200=7800 м
3)7800:30=260 м/мин
Андрей Николаевич Колмогоров (1903—1987), — русский математик. Открыл необходимые условия, при которых закон больших чисел имеет место. Основатель научных школ по теории вероятностей и теории функций.
Михаил Васильевич Остроградский внес выдающийся вклад и в область математического анализа. Его результаты вошли в современную математику в качестве существенной и неотъемлемой ее части.