Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Допустим, за икс мы взяли число –1, тогда выражение у нас получится следующее: Иными словами, для икс –1 соответствует значение игрек, равное 4.
Берём теперь за икс число 0, тогда выражение у нас получится следующее: – для точки икс, равной нулю, соответствует значение игрек, которое также равно нулю.
В итоге получаем две точки – (–1; 4) и (0; 0). Проведи прямую через эти точки и, если тебе это надо, обозначь точки пересечения с осями координат (точка, в которой прямая пересекает ось ординат или ось абсцисс).
18 и 1 см
9 и 2 см
3 и 6 см