V=1/3пH(R1в квадрате + R1*R2 + R2 в квадрате) . Радиусы нам известны R1=10 R2=6. Нам нужно узнать только высоту. рассмотрим треугольник СКД , где угол СДК=60, СК-высота, проведенная из вершины С. СК-искомая высота. рассмотрим трапецию АБСД. (БН- высота, проведенная из вершины Б) НК=БС( т.к трапеция равнобедренная) пусть АН= КД=х. Тогда х+ 2*R1 +x=2*R2. 2х+12=20. 2х=8. х=4. в тругольнике СКД выразим тангенс угла в 60 градусов. tg60=СК/КД. СК=(корень из 3)*4. V=1/3*п* (корень из 3)*4 *(36 + 60 +100)= 784/3*п* корень из 3
Пошаговое объяснение:
В основании правильной 4-ной пирамиды лежит квадрат. Пусть его диагонали равны 2х, тогда из условия равновеликости имеем: 1/2*2x*2x=1/2*2x*10, значит: 2x=10 <=> x=5. Площадь основания равна 2x^2=2*25=50. Ребро основания по теореме Пифагора равно кореньиз(25+25)=5*кореньиздвух. Боковое ребро по теореме Пифагора равно кореньиз (100+25)=5*кореньизтрех. Т.к. боковая грань это равнобедр.треуг.со сторонами 5*кореньизтрех, 5*кореньизтрех, 5*кореньиздвух, то площадь найдем как полупроизведение высоты на основание. Высота грани по теореме Пифагора равна кореньиз(125-12,5)=кореньиз(112,5)=7,5*кореньиздвух. Площадь грани равна 1/2*5*кореньиздвух*7,5*кореньиздвух=37,5. Полная поверхность равна 4*37,5+50=200. ответ: 200.