Пошаговое объяснение:
Диагональ прямоугольника равна по теореме Пифагора :
sqrt ( 6^2+ 8^2) =10( см). В прямоугольном треугольнике с высотой пирамиды гипотенуза равна 13 см, один из катетов - 5см ( половина диагонали прямоугольника). Высота по теореме Пифагора равна sqrt(13^2 - 5^2)=12(см). Площадь полной поверхности складывается из площади основания, площадей двух пар равных боковых граней. Площадь основания равна 6х8=48 (кв. см). Апофемы ( высоты боковых граней ) находятся из прямоугольных треугольников с высотами пирамиды. Вторые катеты равны половине сторон основания. Т.о. одна апофема по теореме Пифагора равна sqrt (12^2 + 4^2)=4 sqrt 10. Другая апофема равна sqrt(12^2 +3^2)=sqrt 153. Площадь боковой грани с первой апофемой равна 6х4sqrt 10/2=12 sqrt 10. Площадь боковой грани со второй апофемой равна 8хsqrt 153 /2= 4 sqrt 153. И площадь полной поверхности пирамиды равна ( 48 + 24 sqrt 10+ 8 sqrt 153) кв. см.
2 задача. 2 боковые ребра находятся из прямоугольных треугольников, содержащих высоту пирамиды, а второй катет - половина известной диагонали (6:2=3). Мы получаем египетский треугольник : катеты равны 4 см и 3 см , поэтому боковое ребро = 5 см. Чтобы найти оставшиеся боковые рёбра, надо
1) pi/2 < a < pi, поэтому sin a > 0, cos a < 0
cos a = -√6/4; cos^2 a = 6/16
sin^2 a = 1 - cos^2 a = 1 - 6/16 = 10/16; sin a = √10/4
tg a = sin a / cos a = (√10/4) : (-√6/4) = -√10/√6 = -√5/√3 = -√15/3
2) 0 < a < pi/2, поэтому sin a > 0, cos a > 0
sin a = √2/3; sin^2 a = 2/9
cos^2 a = 1 - sin^2 a = 1 - 2/9 = 7/9; cos a = √7/3
tg a = sin a / cos a = (√2/3) : (√7/3) = √2/√7 = √14/7
3) 3pi/2 < a < 2pi, поэтому sin a < 0, cos a > 0
cos a = 15/17; cos^2 a = 225/289
sin^2 a = 1 - cos^2 a = 1 - 225/289 = 64/289; sin a = -8/17
tg a = sin a / cos a = (-8/17) : (15/17) = -8/15
Пошаговое объяснение:
х - 100%
12 = 20%
20х = 1200
х = 60
ответ. 60