Мой чертеж - во вложении.
1) Докажем сначала пункт Б).
Т.к. по условию Е-середина АВ, F-середина ВС, то EF-средняя линия ΔАВС. ⇒ FE║AC.
Т.к. BD-высота, то BD⊥AC ⇒ BD⊥FE (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой). Доказано.
2) Докажем равенство углов EBF и EDF. Пусть BD и EF пересекаются в точке М.
По теореме Фалеса: т.к. FE║AC и F-середина ВС, то М-середина BD.
⇒ в Δ BED EМ-это медиана и высота. ⇒ Δ BED-равнобедренный ⇒ BE=ED.
Аналогично доказывается, что Δ BFD-равнобедренный ⇒ BF=FD.
Рассмотрим Δ EBF и Δ EDF. По доказанному выше они равны по трём сторонам (BE=ED, BF=FD, EF-общая). ⇒∠EBF=∠EDF. Доказано.
2) х*(6+х)=6х+х² см² площадь первого прямоугольника
3) 6+х-3=3+х см длинная сторона
4) х+2=х+2 см короткая сторона
5) (х+2)*(х+3)=х²+3х+2х+6=х²+5х+6 см² площадь второго прямоугольника