В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
Пусть х – рублей стоит одна ракетка, а у рублей – один мяч. После скидок стоимость ракетки снизили на 25% , т.е. стоимость ракетки составила 75 % (100%-25%) от х или 0,75х, а стоимость мяча снизилась – 0,90у.
Составим систему уравнений : 8х+10у=4560 8*0,75х+10*0,90у=3780
8х+10у=4560 6x+9y=3780
Решить систему уравнений методом сложения (возьмите систему в скобки {): _8х+10у=4560 [*9 6x+9y=3780 [*10
9(8х+10у)-10(6x+9y)=9*4560-10*3780 72x+90y-60x-90y=41040-37800 12x=3240 х=270 (рублей) – стоит одна ракетки. 8*270+10у=4560 2160+10у=4560 10у=2400 у=240 (рублей) – стоит один мяч ответ: стоимость одно ракетки - 270 рублей, стоимость одного мяча=240 рублей.