Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
5k
4k
=
5⋅11
4⋅11
=
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5k
4k
=
5⋅12
4⋅12
=
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5k
4k
=
5⋅13
4⋅13
=
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5k
4k
=
5⋅14
4⋅14
=
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5k
4k
=
5⋅15
4⋅15
=
75
60
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.
Пусть событие А - изделие окажется бракованным и рассмотрим гипотезы :
H_1-H
1
− изделие изготовлено первым поставщиком;
H_2-H
2
− изделие изготовлено вторым поставщиком;
H_3-H
3
− изделие изготовлено третьим поставщиком
Из условия P(H_1)=\dfrac{200}{1000}=0.2;~ P(H_2)=\dfrac{300}{1000}=0.3;~ P(H_3)=\dfrac{500}{1000}=0.5P(H
1
)=
1000
200
=0.2; P(H
2
)=
1000
300
=0.3; P(H
3
)=
1000
500
=0.5 и условные вероятности
\begin{gathered}P(A|H_1)=5\%:100\%=0.05\\ P(A|H_2)=6\%:100\%=0.06\\ P(A|H_3)=4\%:100\%=0.04\end{gathered}
P(A∣H
1
)=5%:100%=0.05
P(A∣H
2
)=6%:100%=0.06
P(A∣H
3
)=4%:100%=0.04
По формуле полной вероятности, вероятность получения со склада бракованного изделия равна
\begin{gathered}P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)+P(A|H_3)P(H_3)=\\ \\ =0.2\cdot 0.05+0.3\cdot 0.06+0.5\cdot 0.04=0.048\end{gathered}
P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)+P(A∣H
3
)P(H
3
)=
=0.2⋅0.05+0.3⋅0.06+0.5⋅0.04=0.048
Тогда вероятность получения со склада годного изделия равна
\overline{P(A)}=1-P(A)=1-0.048=0.952
P(A)
=1−P(A)=1−0.048=0.952
ответ: 0,952.
Значит, выйти из дома она должна на 20 мин раньше, т.е. в 15 ч 45 мин.