Пошаговое объяснение:
Алгоритм решения задач на составление уравнений в 5 классе.
Многие задачи в 5 классе решаются с уравнений. От учеников при этом требуется выяснить все величины, участвующие в задаче, отделить известные от неизвестных, установить зависимость между ними, выбрать одну из них для составления уравнения.
При решении задач на составление уравнений можно выделить три этапа:
распознавание величин, участвующих в задаче;
установление зависимостей между величинами;
запись одной величины через другую.
На первом этапе происходит знакомство с всевозможными величинами (стоимость, масса, путь, скорость, время и т.д.). Я читаю несколько предложений и учеников установить, о каких величинах идёт речь в каждом предложении. На втором этапе ученики устанавливают, в каком случае величины суммируются, а в каком случае они вычитаются. Я говорю: в задачах, где требуется сравнить величины, встречаются такие слова: «больше», «меньше», «дешевле», «дороже», «выше», «ниже», «быстрее», «медленнее» и т.д. Узнать же, насколько одна величина больше или меньше другой можно действием вычитания. А на суммирование величин указывают следующие слова: «всего собрали», «всего сделали», «общая масса» и т.д.
Итак, ученик и выслушивают предложения, определяют о каких величинах идёт речь, устанавливают: сравниваются ли они или суммируются и схематически записывают зависимость между ними. Например:
Путь, пройденный путешественниками навстречу друг другу за одно и тоже время равен 18км.
Величины: S1 – путь первого путешественника,
S2 – путь второго путешественника.
S1 + S2 = 18
2) Слонёнок и слониха вместе весят 7200 кг.
Величины: m1 – масса слонихи,
m2 – масса слонёнка.
m1 + m2 = 7200
Бутылка с виноградным соком стоит 60 коп.
Величины: р1 - стоимость бутылки,
р2 - стоимость сока.
р1 + р2 = 60
За одно и тоже время первый турист на 5 км больше, чем второй.
Величины: s1 – путь первого туриста,
s2 – путь второго туриста.
s1 – s2 = 5
Затем ученикам даётся схема решения задач на составление уравнений:
перечислить величины, данные в условии задачи.
выбрать меньшую величину из неизвестных величин и обозначить через х.
остальные неизвестные выразить через меньшую величину, т.е. через х.
выяснить сравниваются или суммируются величины.
составить схему уравнения.
Эта схема позволяет ученикам увидеть закономерности между величинами.
Задача: школьники собрали всего 1650 кг картофеля, причём до обеда было собрано в 2 раза больше, чем после обеда. Сколько картофеля собрали школьники после обеда?
Ученики читают условие задачи и устанавливают, что
в условие задачи входят величины масса картофеля, собранного до обеда и масса картофеля, собранного после обеда, общая масса собранного картофеля.
Масса картофеля, собранного после обеда меньше. Её принимаем за х.
Тогда масса картофеля, собранного до обеда, равна 2х кг.
1650 – сумма величин, т.к. в задаче говорится, что всего собрали 1650кг.
Составляется уравнение: 2х + х = 1650.
Итак, этот алгоритм решения задач на составление уравнений учит учеников видеть величины, заданные в условии задачи, и вскрывать связи между ними. А это формированию навыка самостоятельно анализировать новые частные случаи без дополнительного объяснения.
пока делала рисунок, чтобы было понятно, как наташа вышла из положения, уже дали правильный ответ. надеюсь, этот не будет лишним. наташа поделила рулет на 3 части. два куска поделила надвое в отношении 1: 3, , что равно 1/4 и 1/12 всего рулета, третий поделила пополам, его каждая часть = 1/6 всего рулета. если придут 3 гостя, каждый получит по 1/3 рулета. 1- ый 1/4+1/12=1/3 рулета. 2-ой 1/6+1/6=1/3 3-ий 1/4+1/12=1/3 если придут 4 гостя 1-ый получит 1/4 2-ой -1/6+1/12=3/12=1/4 3-ий -1/6+1/12=3/12=1/4 4-ый -1/4 всего рулета. в итоге каждый гость получит не более двух кусков рулета. как это выглядит - см. вложение