Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры (на рисунке справа). В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».
Пошаговое объяснение:
ответ: 1
Пошаговое объяснение:
Пусть x - количество девушек, тогда 7x - количество юношей, всего 8x участников.Пусть y - очки, набранные девушками, 3y - очки, набранные юношами, всего 4y очков.
Число игроков в круговом турнире n, то число игр рассчитывается по формуле n(n-1)/2.Это значение нужно умножить на 2, так как каждый с каждым играют по 2 раза.Всего игр будет сыграно 8x(8x-1).
Так как после каждой игры, независимо от того кто выиграл, в общую копилку прибавляется 1 очко, общее количество очков за турнир будет равно количеству игр, то есть 4y = 8x(8x-1). Откуда y=2x(8x-1)
Каждая девушка может набрать максимум 2(8x-1) очков. Всего девушек x, поэтому вместе они могут набрать максимум 2x(8x-1) - x(x-1)/2, где x(x-1) - количество игр между девушками. То есть появляется условие y <= 2x(8x-1) - x(x-1)/2.
Подставляем в последнее неравенство значение y из уравнения 1, сокращаем и получаем:
x(x-1) <= 0
40%+25%=65% - те, что занимаются на уроке прыжками
100%-65%=35% - которые сидят на скамейке, т. е. 7 человек
всего на уроке физкультуры: 7*100/35=20 чел.
ответ: 20 человек.