В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение:
1- весь путь
1/х=0,5/(х-15)+0,5/50
1/х=0,5/(х-15)+0,01 домножим на х(х-15)
х-15=0,5х+0,01 х(х-15)
0,5х-15=0,01х²-0,15х
0,01х²-0,65х+15=0 домножим на 100
х²-65х+1500=0
D = (-65)2 - 4·1·1500 = 4225 - 6000 = -1775
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Скорее всего ошибка в условии