1)12*8=96-площадь прямоугольника
2) (12+8)*2=40-периметр прямоугольника
Он, к примеру, сначала взвесит 1009 "не пересекающихся" пар монет. И узнает их суммарный вес.
Останется еще 3 монеты (по причине того, что 2021 - 1009 · 2 = 3). Первая будет взвешена по очереди со второй и с третьей, а дальше на весах появятся вторая и третья монета.
Результатом таких взвешиваний будут три числа. Если мы их сложим, то получим удвоенный вес первой, второй и третьей монет. Если разделим на два, то получим вес всех трех оставшихся монет.
И прибавим его к весу 1009 пар взвешенных ранее 1009 пар монет. Получим суммарный вес всех монет.
2) Меньше, чем за 1012 взвешиваний, в общем случае суммарный вес монет не удастся узнать.Почему? Очевидно, что при взвешиваниях каждая монета должна побывать на весах. Поэтому взвешиваний должно быть уже не меньше 1011 (2021 : 2 = 1010 пар монет, и 1 в остатке дает 1011-ое взвешивание).
Несложно понять, что если нам удалось за 1011 взвешиваний узнать суммарный вес монет, то: 1) все монеты побывали на весах; 2) ровно одна монета (обозначим ее буквой М) побывала на весах два раза, во второй раз - с монетой Л, образовавшей в результате остатка при делении на 2 числа 2021.
Суммарный вес всех монет, кроме М нам известен. Следовательно, задача решится, если мы найдем Л. А чтобы найти Л, нужно найти М. Но М как из первого взвешивания, так и из второго найти нельзя.
Так как получается что-то наподобие системы из двух линейных уравнений с тремя неизвестными (X + M = a, M + L = b).
Таким образом, за 1011 (и меньше) взвешиваний узнать суммарный вес всех монет не удастся. А за 1012 - уже получится.
Если оканчивается числом n, то число
оканчивается на четыре нуля, т.е. делится на 10⁴;
Итак, ; Теперь степени двойки и пятерки нам нужно раскидать между числами n и n+3; Заметим, что n и n+3 разной четности. Поэтому ровно одно из чисел делится на 2⁴; Поскольку разница чисел равна 3, то оба не могут одновременно делится на 5. То есть ровно одно из чисел делится на 5⁴. Если n делится одновременно на 2⁴ и 5⁴, то оно по крайней мере 10000, но мы рассматриваем четырехзначные числа. Пусть n+3 делится на 2⁴ и 5⁴. Тогда единственное удовлетворяющее условию значение n есть 9997. Запомним.
Пусть теперь n делится на 2⁴, а n+3 на 5⁴. Тогда ; Осталось найти наименьшее натуральное такое k, что
. Небольшим перебором (по кратным 625) убеждаемся, что 625*3-3 делится на 16, а, значит, наименьшее такое k это 117. Тогда
;
И последний случай. Пусть n делится на 5⁴, а n+3 на 2⁴. Тогда n нечетно. ;
. Наименьшее k тогда 13.
. Наименьшее число - 1872
ответ: 1872
Периметр - (12+8)*2=20 см
Площадь 12*8=96 квадр. см