Обозначим выполнение всей работы - наполнение бассейна - за 1.
Пусть первая труба наполняет бассейн за х часов, тогда вторая наполнит его согласно условию за (х + 5) часов.
За 1 час первая труба наполняет 1/х бассейна, а вторая – 1/(х + 5) бассейна.
Вместе за 1 час обе трубы наполнят: 1/х + 1/(х + 5) бассейна, что по условию задачи составит 1/6 бассейна. Составляем и решаем уравнение:
1/х + 1/(х + 5) = 1/6;
6х + 30 + 6х = х2 + 5х;
12х + 30 = х2 + 5х;
х2 – 7х – 30 = 0;
Д = 49 + 120 = 169 = 132;
х1 =(7 - 13 )/2 = -3 – не подходит по условию задачи;
х2 = (7 - 13)/2 = 10 часов.
Значит, первая труба наполнит весь бассейн за 10 часов, тогда вторая труба наполнит его за 10 + 5 = 15 часов.
ответ: 10 часов, 15 часов
-6,2
Пошаговое объяснение:
-5,16-4,83+5,16(если перед скобкой стоит минус, то раскрывая скобки знак меняется)-5,2+3,83. -5,16 и +5,16 являются противоположными числами, в сумме дают 0. их можно просто выбросить.-4,83+3,83=-1. получается выражение -1-5,2=-6,2