1 полка - 120 книг 2 полка - ?, в 2 раза > книг, чем на первой НА ? КНИГ НА 3 ПОЛКЕ <, ЧЕМ НА ВТОРОЙ 3 полка - ?, в 3 раза <, чем на второй 1)120*2=240(книг) - на второй полке 2) 240/3=80(книг) - на третьей полке 3)120-80=40(книг) ответ: на 4о книг на 3 полке меньше,чем на второй.
Чтобы было понятнее и удобнее различать какое именно число дает остаток , сделаем небольшое различие в символах: Мы имеем: 1 случай: а : 7 = n (ост.2) = n +2/7 ⇒ a = 7n + 2; 2 случай: A : 7 = n(ост.4) = n+ 4/7 ⇒ A = 7n + 4; где n - неполное частное, число натурального ряда. Возведем наши числа в квадрат: а² = (7n + 2)² = 49n² + 28n + 4 = 7n(7n+4) + 4 A² = (7n + 4)² = 49n² + 56n + 16 = 7n(7n+8) + 16 Разделим квадраты чисел на 7: а² : 7 = n(n+4) + 4/7, A²: 7 = n(n+8) + 16/7 = [n(n+8) +2] + 2/7 (так как из неправильной дроби 17 можно выделить целую часть и прибавить ее к неполному частному: 16/7=2ц 2/7) Мы видим, что при делении а² на 7 остаток получается 4, а при делении А² на 7 остаток 2, значит, остаток в первом случае БОЛЬШЕ ( 4/7>2/7) ответ: при делении квадрата числа а на 7 остаток будет больше в случае, когда остаток от деления самого а на 7 меньше, те когда остаток от самого числа будет 2, а не 4. Правильный номер ответа: 1
Примем время перового за Х, то время второго- за У. По условию задачи, половина пути первого равна разнице пути второго и 1,5 часа (или 90 мин), т.е 1/2 х= у-90. И по условию задачи: половина пути второго равна разнице пути первого и 45 минут, то есть 1/2 у= х-45. Умножим оба выражения на 2, чтобы дробей не было, получается х= 2у-180 и у= 2х-90. Подставим первое выражение во второе: у= 2(2у-180)-90 или 4у-360-90-у=0. Решаем: 3у=450, то у= 150 (минут)- время второго. х= 2*150-180= 120 (мин) время перового 150-120=30 минут. ответ: первый придет раньше на 30 минут, чем второй- это ответ а- 30 минут= 0,5 часа
240:3=80(книг) на 3-ей полке
120-80=40
ответ:на 3-ей полке в 40 раз меньше книг, чем на 1-ой