1698
Пошаговое объяснение:
Пусть число имеет вид abcd. Если d<8, то сумма цифр в новом числе будет на 2 больше, чем в исходном, и обе они не могут делиться на 8. Значит , d>8. Рассмотрим теперь 3 случая:
1) abcd, c<9. Число перейдёт в ab(c+1)(d-8), сумма изменится на 7.
2) ab9d, b<9. Число перейдёт в a(b+1)0(d-8), сумма изменится на 16.
3) a99d. Число перейдёт в (a+1)00(d-8), сумма изменится на 25.
Итак, нам подходят числа вида ab9d, b<9,d>8. Так как число наименьшее, несложно его найти: 1698.
1698
Пошаговое объяснение:
Пусть число имеет вид abcd. Если d<8, то сумма цифр в новом числе будет на 2 больше, чем в исходном, и обе они не могут делиться на 8. Значит , d>8. Рассмотрим теперь 3 случая:
1) abcd, c<9. Число перейдёт в ab(c+1)(d-8), сумма изменится на 7.
2) ab9d, b<9. Число перейдёт в a(b+1)0(d-8), сумма изменится на 16.
3) a99d. Число перейдёт в (a+1)00(d-8), сумма изменится на 25.
Итак, нам подходят числа вида ab9d, b<9,d>8. Так как число наименьшее, несложно его найти: 1698.
1/7и4/21=1/7*3=3/21 меньше 4/21
3/5и8/15=3/5*3=9/15 больше 8/15
3/5и11/20=3/5*4=12/20 больше11/20
4/7и16/28=4/7*4=16/28 = 16/28
4/9и8/15=4/9*5=20/45 меньше 8/15*3=24/45
5/12и7/18=5/12*3=15/36 больше 7/18*2=14/36
37/115и38/175=37/15 больше 38/175
9/65и16/117=9/65меньше 16/117