1)
3+2+4=9 - это все части
90:9=10 - это на одну часть
10×3=30 (см) - это на 1ю часть
10×2=20 (см) - это на 2ю часть
10×4=40 (см) - это на 3ю часть
ответ: 30,20,40
2)
Треугольники МNК и ANB подобны, т.к. прямая, паралельная одной из сторон треугольника и пересекающая две другие его стороны, отсекает треугольник, подобный данному. Отношение медиан в подобных треугольниках равно отношению сходственных сторон. Иедианы , точкой пересечения делятся 2: 1 считая от вершины. Тогда АВ:МК=МО:NP, где Р-это точка пересечения медианы NP со стороной МК Пусть МК=х х:12=3:2 х=18 см.
3)
По теореме Пифагора АВ=корень из ВС^2+АС^2=корень из 100+100=200см.-длина гипотенузы. Т к катет АС(10см) в 2раза меньше гипотенузы АВ(200см), то угол В=300градусов., может быть, но это не точно, в общем за теоремой Пифагора решаеться задача.
Среди этих чисел не может быть числа, оканчивающегося на 0, так как на 0 не делится никакое число.
Значит, эти числа либо от до
, либо от
до
.
Значит, в любом случае среди этих чисел есть следующие:
, делящееся на 2
, делящееся на 3
, делящееся на 4
, делящееся на 5
, делящееся на 6
, делящееся на 7
, делящееся на 8
Рассмотрим утверждение " делится на 4". Число делится на 4, если число, образованное двумя последними цифрами делится на 4. Значит
делится на 4,
делится на 4,
делится на 4,
делится на 2, значит
- четное.
Рассмотрим утверждение " делится на 3". Число делится на 3, если сумма цифр числа делится на 3. Значит,
делится на 3,
делится на 3. Выпишем пары цифр, где
, а
- четное, в сумме кратные 3: (1; 2); (1; 8); (2; 4); (3; 0); (3; 6); (4; 2); (4; 8); (5; 4); (6; 0); (6; 6); (7; 2); (7; 8); (8; 4); (9; 0); (9; 6).
Рассмотрим утверждение " делится на 7". Если
делится на 7, то
делится на 7,
делится на 7. Из ранее выписанных пар только пары (4; 2); (8; 4) удовлетворяют этому условию.
Мы учили делимость на 3, 4 и 7. Делимость на 2, 5 и 6 будет выполняться автоматически. Проверим делимость на 8. Число 428 не делится на 8, а число 848 делится на 8.
Число 841, очевидно, делится на 1, а число 849 не делится на 9. Значит, это числа от 841 до 848, а сумма цифр наименьшего числа равна 8+4+1=13.
ответ: 13