1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
а) 1
б) 5
в) 1
г) 37
Пошаговое объяснение:
Возможно,вы имели НОД (87,850),а также НОД (565,70)
а) Разложим на простые множители 87
87 = 3 • 29
Разложим на простые множители 850
850 = 2 • 5 • 5 • 17
Выберем одинаковые простые множители в обоих числах.
Одинаковые простые множители отсутствуют
Находим произведение одинаковых простых множителей и записываем ответ
НОД (87; 850) = 1
б)Разложим на простые множители 565
565 = 5 • 113
Разложим на простые множители 70
70 = 2 • 5 • 7
Выберем одинаковые простые множители в обоих числах.
5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (565; 70) = 5 = 5
в)Разложим на простые множители 101
101 = 101
Разложим на простые множители 12
12 = 2 • 2 • 3
Выберем одинаковые простые множители в обоих числах.
Одинаковые простые множители отсутствуют
Находим произведение одинаковых простых множителей и записываем ответ
НОД (101; 12) = 1
г)Разложим на простые множители 555
555 = 3 • 5 • 37
Разложим на простые множители 703
703 = 19 • 37
Выберем одинаковые простые множители в обоих числах.
37
Находим произведение одинаковых простых множителей и записываем ответ
НОД (555; 703) = 37 = 37
а),в) Такие числа называют взаимно простыми числами.
5б + 4(б-7) = 5б + 4б - 28 = 9б - 28
16 + 8(5 - c) = 16 + 40 - 8c = 56 - 8c
29 + 7(2-3a) = 29 + 14 - 21a = 43 - 21a
15a + 2(9-2a) = 15a + 18 - 4a = 11a + 18
23a + 4(5a - 3) = 23a + 20a - 12 = 43a -12