Алгебра происходит от выражения "соединяя разрозненное". Алгебра работает на высоком уровне абстракции. Её удобно применять для описания практически любых объектов, процессов.
Геометрия происходит от выражения "измеряя Землю". Геометрия тоже абстрактна, при этом абстракция всё-таки больше привязана к сущности планеты, к материальному миру, к тому, что можно потрогать.
Впрочем, и алгебра, и геометрия — подход к моделированию нашего мира. Просто в одних случаях удобнее пользоваться алгеброй, а в других быстрее воспользоваться геометрией.
НО! Еще есть алгебраическая геометрия) Там уже алгебру с геометрией объединяют).
Пошаговое объяснение:
ответ: k= (20^13-7)/13
Можно посчитать и проверить:
k=6301538461538461
Пошаговое объяснение:
Все просто . Тк 13 простое число, то если n^2 делиться на 13, то и n делится на 13. Тк 13 можно разбить одним в виде произведения натуральных чисел 13*1 ,то n в любом случае делится на 13. Таким образом задаче удовлетворяют все числа кратные 13. То есть: 13*1 ;13*2 ;13*k
13*k<=20^13
Чтобы найти наибольшее k необходимо отыскать остаток от деления
20^13 на 13
Найдем закономерность чередования остатков 20^m на 13.
Тк остатков ограниченное количество, то рано или поздно остаток повторится с каким то из предыдущих , это и будет период чередования. Умножаем сразу на предыдущий остаток,тк 20*13*f делится на 13 :
20= 13 +7 (-6)
20*7=140= 10*13+10 (10) (-3)
20*10=200= 13*15+5 (5) (-8)
20*5=100=13*7+9 (9) (-4)
20*9=180=13*13+11 (11) (-2)
20*11=220=13*16 +12 (12) (-1)
20*12=240=13*18+6 (-7) (повтор)
Таким образом остатки чередуются по закону:
7,10,5,9,11,12,-7,-10,-5,-9 ,-11,-12,7,10... (период равен 12)
Остаток от деления 13 на 12 равен 1, таким образом остаток от деления
20^13 на 13 равен 7.
Тогда таких чисел:
k= (20^13-7)/13
P.s найдем например остаток от деления:
20^100 на 13
Для этого ищем остаток от деления 100 на 12
100=12*8+4. Таким образом нам нужно 4 число в периоде:
7,10,5,9,11,12,-7,-10,-5,-9 ,-11,-12
Таким образом остаток от деления :
20^100 на 13 равен 9.