М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
нургалым1
нургалым1
19.04.2021 13:12 •  Математика

Решить : в мастерской было 129 рабочих. когда в нее вновь приняти 6 мужчин, то мужчин стало вчетверо больше, чем женщин. сколько в мастерской было женщин?

👇
Ответ:
katrinvar
katrinvar
19.04.2021
1) 129 + 6 = 135 рабочих (стало всего)
2) 135 : 5 = 27 женщин (было женщин в мастерской)
4,4(45 оценок)
Ответ:
messageman1
messageman1
19.04.2021
129+6=135 чел стало в бригаде после принятия 6 мужчин
135/5=27 ч женщин в бригаде
Пояснения: мужчин в четверо больше, чем женщин. Если принять за Х количество женщин, то мужчин получается 4Х, тогда Х+4Х=129+6
4,4(62 оценок)
Открыть все ответы
Ответ:
каринп4
каринп4
19.04.2021

ответ:

Пошаговое объяснение:

Из условия следует, что уравнение f(x)-x=0 не имеет решений. Поскольку f(x)-x - непрерывная функция, то она либо всюду положительна, либо всюду отрицательна, иначе она бы в некоторой точке принимала значение 0 (по теореме о промежуточном значении). Пусть f(x)-x всюду положительна. Это значит, что для любого x выполнено неравенство f(x)>x. Пусть f(x)=y. Тогда f(f(x))=f(y)>y=f(x)>x. Таким образом, при любом x f(f(x))-x>0, т.е. уравнение f(f(x))=x не имеет корней. Аналогичным образом, показываем, что уравнение f(f(x))=x не имеет корней и в том случае, когда для любого x выполнено неравенство f(x)<x.

4,4(45 оценок)
Ответ:
Люба011
Люба011
19.04.2021

Пусть f_{n}(x) означает f(f(...(x)...)), где f применена n раз.

Поскольку f многочлен, то у него есть значение в любой точке. (*)

Докажем утверждение по индукции.

База: n=1 - это то, что дано по условию.

Переход:

Пусть для некоторого n=k верно; Докажем, что из этого следует справедливость утверждения и для n=k+1; Действительно, по предположению индукции множество решений уравнения f_{k}(x)=x совпадает с F; Возьмем f от обеих частей (благодаря (*) мы можем это сделать): f(f_{k}(x))=f_{k+1}(x)=f(x); Но если сделать замену f(x)=u, получим f_{k}(u)=u; А множество решений этого уравнения лежит в F; Предположим, что есть некоторый элемент y\in F, такой, что для него не найдется x, чтобы f(x)=y; Тогда f_{k}(y)\neq y, но y лежит в F, противоречие. Это завершает переход.

4,4(40 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ