Жангир хан, чьим основным увлечением была наука, а смыслом недолгой жизни опережал первого казахского ученого Шокана Уалиханова на 34 года, первого казахского педагога Ибрая Алтынсарина – на 40 лет и великого казахского мыслителя Абая Кунанбаева – на 44 года. В этой прописной истине, не раскрученной у нас по непонятной нам причине, я убедился в году, оказавшись по случайному стечению обстоятельств в Казанском университете. Директор Национальной библиотеки Татарстана, узнав, что я приехал в университетскую библиотеку имени Н.И. Лобачевского, а работаю в Музее истории казахстанской науки РГП «Ғылым ордасы», мне в тот же день посоветовал посмотреть Музей истории Казанского университета и Национальный музей Республики Татарстан. Оказалось, что в Казанском университете, созданном в 1804 году, работают 10 музеев: археологии, геологии, ботаники, зоологии, этнографии, истории педагогики, истории университета, казанской химической школы, старинных вещей и музей-лаборатория. В Музее истории Казанского университета на самом видном месте оформлена галерея портретов почетных членов Казанского университета. Рядом с портретами выдающихся деятелей науки и России я увидел портрет казахского хана Букеевской Орды Жангира. Там, далеко от Казахстана, воздано должное за его заслуги в области науки и
1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
Периметр равен 14+14+20+20=68.
ответ:68