М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Fetissh1
Fetissh1
27.12.2021 10:47 •  Математика

Как разрезать квадрат по клеткам 3 на 3 на две части

👇
Ответ:
dilyaramazhitova
dilyaramazhitova
27.12.2021
Проведи линию по диаганали (наискосок)
4,7(18 оценок)
Открыть все ответы
Ответ:
nata12377
nata12377
27.12.2021

Пошаговое объяснение:

1. область определения.

функция определена везде, где знаменатель не равен нюлю

x²-1 ≠ 0 ⇒ х ≠ ±1

ООФ x ∈ R: x≠1 ∪ x≠ -1

2) уравнение касательной

\displaystyle y_k=f(x_0)+f'(x_0)(x-x_0)

f'(x) =  -3x²-6x

f(-5) = 52

f'(-5)= -45

уравнение касательной

y=52+(-45)(x--5)

или

\displaystyle y_k = -45x-173

3) экстремумы и монотонность

критические точки ищем при первой производной

f'(x) = 3x²-18x+15

3x²-18x+15 = 0 ⇒  x₁ = 1;   x₂ = 5 -это точки экстремума

f(1) = 7  это максимум

f(5) = -25 - это минимум

теперь рассмотрим интервалы монотонности

(-∞ ;1)  f'(0) = +15 > 0 - функция возрастает

(1; 5)  f'(2) = 3*2² -18*2 +15 = -9 < 0 функция убывает

(5; +∞)  f'(10) = 3*10² -18*10 +15 > 0 - функция возрастает

4) экстремумы на промежутке

ищем критические точки

f'(x) =  4 - 2x

4 - 2x = 0 ⇒  x₁ = 2

поскольку нам задана парабола ветвями вниз, то это будет точка максимума и она ∈ [0;4]

f(2) = 6 - это максимум

поскольку нам заданы минимум и максимум на отрезке, ищем значения функции на концах отрезка

f(0) = 2

f(4) = 2

итого имеем

наибольшее значение функции в точке х=2 равно f(2) = 6

наименьшие значения функции на концах отрезка и равны

f(0) = 2 f(4) = 2

4,4(34 оценок)
Ответ:
Alexandr2K17
Alexandr2K17
27.12.2021

︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋


Родственные связи можно представить в виде схемы. Например, на схеме ниже представлена семья с двумя
4,6(17 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ