Всего белых шаров: 10-3 = 7
Общее число возможных элементарных исходов для данных испытаний равно числу которыми можно извлечь 2 шаров из 10:
10!/2!8!=45
1. Найдем вероятность того, что среди выбранных 2 шаров один белый.
Подсчитаем число исходов, благоприятствующих данному событию:
а) один шар среди 7 белых можно выбрать количество которых равно:
7!/1!6!= 7
б) Остальные 1 черные шары можно выбрать из 3 черных:
3!/1!2!=3
1. Найдем вероятность того, что среди выбранных 2 шаров 1 белых.
Количество вариантов выбора из 7 белых шаров:
7!/1!6!= 7
Количество вариантов выбора из 3 черных шаров остальные 1 черных:
3!/1!2!=3
ответ:7*3/45=0,467
ДАНО: y= -0,25*x⁴+*x².
Исследование:
1. Область определения: D(y)= R, X∈(-∞;+∞)
2. Непрерывная. Гладкая. Вертикальных асимптот - нет
3.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞.
4. Нули функции, пересечение с осью ОХ. Y(x)=0.
Применим метод подстановки. z=x². -0,25z² + z= 0
Нули функции: x₁=-2, x₂ = х₃=0, x₄ = 2.
5. Интервалы знакопостоянства.
Положительна: Y(x) >=0 - Х∈[-2;2].
Отрицательна: Y<0 - X∈(-∞;-2]∪[2;+∞).
6. Проверка на чётность. Все степени при Х: 4, 2 - чётные.
Функция чётная: Y(-x) = Y(x)
7. Поиск экстремумов по первой производной.
Y'(x) = -x³ + 2*x = -x*(x² - 2) = 0
Точки экстремумов: x₅ = -√2, х₆ = 0, х₇ = √2 (≈1,4)
7. Локальный экстремум: Ymin(0) = 0, Ymax - Y(x₅) = Y(х₇) = 1.
8. Интервалы монотонности.
Убывает - X∈(-√2;0]∪[√2;+∞), возрастает - X∈(-∞;-√2]∪[0;√2]
9. Поиск перегибов по второй производной.
Y"(x) = -3*x² + 2 = 0, x = √(2/3) ≈ 0.82 - точки перегиба - . Y"(x)>0
10. Вогнутая - "ложка" - X∈[-0.82;+0.82],
Выпуклая - "горка" - Х∈(-∞;-0.82]∪[0.82;+∞).
11. Область значений. E(y) = [1;-∞)
12. График функции в приложении.
2) 2(9+4) = 26 (см) -периметр.
ответ: 26см - периметр прямоугольника.
Объяснение: S = a *b (площадь равна произведению сторон. S = 36, a = 4, значит b = 36: 4 = 9.
P = 2(a+b), (периметр Р = 2а + 2b = 2(a + b) = 2(4+9) = 26