М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rfrfrfrfe
rfrfrfrfe
22.09.2022 08:42 •  Математика

Вычисли,выбрав удобный порядок выполнения действий. 128+374+72+226

👇
Ответ:
joker231341
joker231341
22.09.2022
(72+128)+(374+226)==200+600=800
4,7(33 оценок)
Открыть все ответы
Ответ:
ната1142
ната1142
22.09.2022

Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.

Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.

— Боз, син нидән болай көчле?

— Көчле булсам,— ди Боз,— мине Кояш эретә алмас иде, — ди.

— Кояш, син нидән көчле? — ди Нарый.

— Көчле булсам, мине Болыт капламас иде.

— Болыт, син нидән көчле?

— Көчле булсам, мине Яңгыр тишеп чыкмас иде.

— Яңгыр, син нидән көчле?

— Көчле булсам,— ди Яңгыр,— мине Җир сеңдермәс иде.

— Җир, син нидән көчле?

— Көчле булсам, мине Үлән тишеп чыкмас иде.

— Үлән, син нидән көчле?

— Көчле булсам, мине Сыер ашамас иде.

— Сыер, син нидән көчле?

— Көчле булсам, мине Пычак кисмәс иде. Хәзер Пычактан сорый инде Нарый:

— Пычак, син нидән көчле?

— Көчле булсам, мине Ут эретмәс иде.

— Ут, син нидән көчле?

— Көчле булсам, мине Су сүндермәс иде.

— Су, син нидән көчле?

— Көчле булсам, мине кеше җиңмәс иде, ә ул мине җиңә, тегермәннәр әйләндерергә җигә! — ди Су.

Шуннан соң Нарый, кешедән дә көчле нәрсә юк икән дип, үз юлына китә, шуның белән әкият тә бетә.

4,8(63 оценок)
Ответ:
nastyayakushka2
nastyayakushka2
22.09.2022

Имеем многочлен P_{n}(x) = 12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3

Корнями многочлена P_{n}(x) называют корни уравнения

12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3 = 0

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.

Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Выпишем все делители свободного члена: \pm 1; \ \pm 3

Подставим x = 1 в корень уравнения и получим:

12 \cdot 1^{5} - 23 \cdot 1^{4} - 27 \cdot 1^{3} - 36 \cdot 1^{2} - 1 + 3 = 0

-72 = 0 — неправда

Подставим x = -1 в корень уравнения и получим:

12 \cdot (-1)^{5} - 23 \cdot (-1)^{4} - 27 \cdot (-1)^{3} - 36 \cdot (-1)^{2} - (-1) + 3 = 0

-40 = 0 — неправда

Подставим x = 3 в корень уравнения и получим:

12 \cdot 3^{5} - 23 \cdot 3^{4} - 27 \cdot 3^{3} - 36 \cdot 3^{2} - 3 + 3 = 0

0 = 0 — правда

Следовательно, x_{1} = 3 — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (x - 3) (см. вложение).

После этого исходное уравнение можно записать разложив на множители:

(x - 3)(12x^{4} + 13x^{3} + 12x^{2} - 1) = 0

Решаем второе уравнение:

12x^{4} + 13x^{3} + 12x^{2} - 1 = 0

12x^{4} + 4x^{3} + 9x^{3} + 3x^{2} + 9x^{2} + 3x - 3x - 1 = 0

4x^{3}(3x + 1) + 3x^{2} (3x + 1) + 3x (3x + 1) - (3x + 1) = 0

(3x + 1)(4x^{3} + 3x^{2} + 3x - 1) = 0

(3x + 1)(4x^{3} - x^{2} + 4x^{2} - x + 4x - 1) = 0

(3x + 1)(x^{2}(4x - 1) + x(4x - 1) + (4x - 1)) = 0

(3x + 1)(4x - 1)(x^{2} + x + 1) = 0

\left[\begin{array}{ccc}3x + 1 = 0 \ \ \ \ \ \\4x - 1 = 0 \ \ \ \ \ \\x^{2} + x + 1 = 0\end{array}\right

\left[\begin{array}{ccc}x = -\dfrac{1}{3} \\x = \dfrac{1}{4} \ \ \\ x \notin \mathbb{R} \ \ \end{array}\right

Рациональные корни: -\dfrac{1}{3} ; \ \dfrac{1}{4}


надо. Найти рациональные корни многочлена f = 12x^5 - 23x^4 - 27x^3 - 36x^2 - x + 3
4,6(2 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ