1) a-b=-3 - разность отрицательная. значит a<b
a=-3+b
a=b-3
a < b
2) a - b = 2/7 - разность положительная. значит a>b
a=2/7+b
a=b+2/7
a > b
3) a - b=0 - разность = 0. значит a=b
a=0+b
a=b
4) a - b= -0.5 - разность отрицательная, значит a<b
a=-0.5+b
a=b-0.5
a < b
5) b-a=1 - разность положительная, значит b>a
b=1+a
b=a+1
b > a
6) b - a=-0.99 - разность отрицательная. значит b<a
b=-0.99+a
b=a-0.99
b < a
К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео: