Есть 2 варианта ответа. 1) Оставить ответ такой, какой получился. Ведь переменная х - это угол. А arc sin(1/3) и есть угол. Чтобы определить значение х в заданном промежутке, надо их приравнять. 1 ответ: х = πk: πk = -π k = -1 x = -π. πk = 3π/2 k = 3/2 Целое значение k = 1. Есть ещё 2 значения к между ними: к =0 х = 0, к = 1 х = π. 2 ответ: x = arc sin(1/3) + 2πk: Так как угол arc sin(1/3) больше 0 и меньше π/2, то заданный промежуток можно выразить так: левый предел:-π - 2πk < π/2, сократим на π: -1 - 2k < 1/2, 2k > -1 - (1/2) , k > -3/4. То есть ближайшее целое значение к = 0, правый предел: 3π/2 - 2πk < π/2, 3/2 - 2k < 1/2, 2k > (3/2) - (1/2) = 2/2 = 1, k > 1/2. Если принять значение k = 1, то тогда корень равен x = arc sin(1/3) + 2π, что больше 3π/2. Значит, k = 0. Корень равен: x = arc sin(1/3).
3 ответ: x = π - arc sin(1/3) + 2πk (именно минус после π). -π = arc sin(1/3) + 2πk, -π - 2πk < π/2, -1 - 2k < 1/2, 2k > -1 -(1/2), 2k >-3/2, k > -3/4. То есть ближайшее целое значение к = 0. Корень равен: x = π - arc sin(1/3).
Итого 5 значений: 1) х = -π; 2) х = 0; 3) х = arc sin(1/3); 4) x = π - arc sin(1/3); 5) x = π.
2) Можно выразить в цифровом виде, найдя arc sin(1/3) в радианах: arc sin(1/3) = 0.339837 радиан. В заданном промежутке 5 значений х: 1) х = - 3,141593; 2) х = 0; 3) х = 0,339837; 4) х = 2,801756; 5) х = 3,141593.
В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15