М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DanilPak2002
DanilPak2002
06.06.2021 08:15 •  Математика

Выражения 12xах5х2= 4бх25х7= 15сх9х4=

👇
Ответ:
atodyshevoxz3kh
atodyshevoxz3kh
06.06.2021
Надеюсь, твой х- это умножение, тогда
120А
700Б
540С
4,8(28 оценок)
Открыть все ответы
Ответ:
Решение
Находим первую производную функции:
y' = -( - x + 13)e^(- x + 13) - e^(- x + 13)
или
y' = (x -14)e^(- x + 13)
Приравниваем ее к нулю:
(x - 14) e^(- x + 13) = 0
e^(- x + 13) ≠ 0
x - 14 = 0
x = 14
Вычисляем значения функции 
f(14) = 1/e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13)
или
y'' = (- x+15)e^(- x + 13)
Вычисляем:
y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e
y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
4,4(6 оценок)
Ответ:
ОМОН07
ОМОН07
06.06.2021

P(A)=1-\sum\limits_{k=0}^n \dfrac{(-1)^k}{k!}\underset{n\to\infty}{\to} 1-\dfrac{1}{e}\approx 0.63

Пошаговое объяснение:

Пусть всего детей было n, и у родителей по одному ребенку.

Событие A="Хотя бы один ребенок получит подарок от своих родителей" противоположно событию B="Ни один ребенок не получит подарок от своих родителей". Значит, искомая вероятность P(A)=1-P(B).

Найдем количество вариантов раздачи подарков, при которых каждый ребенок получит подарок от чужих родителей.

Рассмотрим таблицу n\times n (см. приложение). Столбец соответствует родителям, строка - детям, выбор ячейки на пересечении i-ой строки и j-ого столбца означает, что i-ый ребенок получил подарок от j-ых родителей [ячейки диагонали не рассматриваются, т.к. получение подарка от своих же родителей - неподходящая ситуация]. Требуется выбрать n ячеек такой таблицы так, чтобы в каждом столбце и строке была выбрана ровно одна ячейка [каждый ребенок получил подарок не от своих родителей, и каждый родитель вручил подарок не своему ребенку].

А это известная задача о расстановке ладей, не бьющих друг друга и не находящихся на одной из диагоналей, для которой было получено явное выражение числа вариантов [подробнее, например, Окунев Л. Я. Комбинаторные задачи на шахматной доске. — 1935 , с .8-14]

Q_n=n!\sum\limits_{k=2}^n \dfrac{(-1)^n}{k!}

Всего вариантов раздачи подарков P_n=n!.

Но тогда P(B)=\dfrac{Q_n}{n!}=\sum\limits_{k=2}^n \dfrac{(-1)^k}{k!}.

Отсюда P(A)=1-\sum\limits_{k=2}^n \dfrac{(-1)^k}{k!}=1-\sum\limits_{k=0}^n \dfrac{(-1)^k}{k!}

________________________

Теперь рассмотрим ситуацию при n\to\infty

Используя разложение e^x=\sum\limits_{k=0}^\infty \dfrac{x^k}{k!}, получим при x=-1 равенство

\dfrac{1}{e}=\sum\limits_{k=0}^\infty \dfrac{(-1)^k}{k!}.

Значит, \lim\limits_{n\to\infty}P(A)=1-\dfrac{1}{e}


На праздник к Деду Морозу пришло много детей. Каждый со своим подарком, который принесли родители.
4,6(52 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ