найдем производную. (3*3х²(х²-3)-3х³*(2х))/(3²(х²-3)²)=0, когда 9х⁴-27х²-6х⁴=0
3х⁴-27х²=0, х²*(х-3)(х+3)=0, разобьем критическими точками числовую ось и установим знак производной в каждом из образовавшихся интервалов методом интервалов. знаменатель равен нулю, когда х=±√3
-3-√30√33
+ - - - - +
Значит, точки экстремума: х= -3 - точка максимума, х=3 - точка минимума, а сами экстремумы - это значения функции в точках экстремума, т.к. максимум это у(-3)=-27/(3*(9-6)) =-3
максимум у(3)=27/(3*(9-6)) =3
а) если a = 12 м, b = 15 м, то
Р=(12+15)*2= 54
б) если a = 34 м, b = 25 м, то
Р=2*(34+25)= 118
в) если a = 78 м, b = 57 м, то
Р= (78+57)*2= 270
г) если a = 154 м, b = 148 м, то
Р= (154+148)*2= 604