Две прямые имеют одну точку пересечения. Добавив к ним ещё одну прямую, мы получим ещё 2 точки пересечения с каждой из этих двух прямых. Добавив ещё одну прямую, она даст дополнительно столько точек пересечения, сколько уже было прямых, т.е. ещё 3. И так далее. Каждая n-ая прямая даёт дополнительно (n-1) точек пересечения с (n-1) прямыми.
1 + 2 + 3 + 4 = 10
Всё вышесказанное справедливо в случае если ни одна из любых 3 прямых не имеет 1 общую точку пересечения.
Если же всё-таки прямые могут пересекаться в одной точке, но не все сразу, то тогда расположив 4 прямые звездой мы имеем 1 их точку пересечения, и, добавив 5-ю прямую получим ещё 4 точки. В этом случае у 5 прямых будет 5 общих точек пересечения.
ответ: 10 точек пересечения будет образовано 5 не параллельными прямыми, когда более 2 прямых не пересекается в одной точке. Или же 5 точек пересечения если более двух прямых может пересекаться в одной точке
y=45+27
y=72
2) 63-(25+z)=26
25+z=63-26
25+z=37
z=37-25
z=12
3)37+x=64
x=64-37
x=27
4) (x-653)+308=417
x-653=417-308
x-653=109
x=109+653
x=762