arcsin (-1) = -π/2 = -90°
arcsin (-√3/2) = -π/3 = -60°
arcsin (-√2/2) = -π/4 = -45°
arcsin (-1/2) = -π/6 = -30°
arcsin (0) = 0 = 0°
arcsin (1/2) = π/6 = 30°
arcsin (√2/2 ) = π/4 = 45°
arcsin (√3/2 ) = π/3 = 60°
arcsin (1 ) = π/2 = 90°
arccos (-1) = π = 180°
arccos (-√3/2) = (5π)/6 = 150°
arccos (-√2/2) = (3π)/4 = 135°
arccos (-1/2) = (2π)/3 = 120°
arccos (0) = π/2 = 90°
arccos (1/2) = π/3 = 60°
arccos (√2/2 ) = π/4 = 45°
arccos (√3/2 ) = π/6 = 30°
arccos (1 ) = 0 = 0°
arctg (-√3) = -π/3 = -60°
arctg (-1) = -π/4 = -45°
arctg (-1/√3) = -π/6 = -30°
arctg (0) = 0 = 0°
arctg (1/√3) = π/6 = 30°
arctg (1) = π/4 = 45°
arctg (√3) = π/3 = 60°
arcctg (-√3) = (5π)/6 = 150°
arcctg (-1) = (3π)/4 = 135°
arcctg (-1/√3) = (2π)/3 = 120°
arcctg (0) = π/2 = 90°
arcctg (1/√3) = π/3 = 60°
arcctg (1) = π/4 = 45°
arcctg (√3) = π/6 = 30°
Чтобы вычислить пример, сначала десятичные и неправильные дроби преобразуем в обычные, при необходимости сократим дроби.
1 11/15 + (5 7/20 * 4,5 + 8,9 * 4 1/2) / 3,75 - 7/9 = 18 1/18.
1 11/15 = (1 * 15 + 11)/15 = 26/15.
5 7/20 = (5 * 20 + 7)/20 = 107/20.
4,5 = 4 5/10 = (4 * 10 + 5)/10 = 45/10 на 5 = 9/2.
8,9 = 8 9/10 = (8 * 10 + 9)/10 = 89/10.
4 1/2 = (4 * 2 + 1)/2 = 9/2.
3,75 = 3 75/100 = (3 * 100 + 75)/100 = 375/100 на 25 = 15/4.
1. 107/20 * 9/2 = (107 * 9)/(20 * 2) = 963/40.
2. 89/10 * 9/2 = (89 * 9)/(10 * 2) = 801/20.
3. 963/40 + 801/20 = (963 + 1602)/40 = 2565/40 на 5 = 513/8.
4. 513/8 / 15/4 = (513 * 4)/(8 * 15) = 2052/120 на 12 = 171/10.
5. 26/15 + 171/10 = (52 + 513)/30 = 565/30 на 5 = 113/6.
6. 113/6 - 7/9 = (339 - 14)/18 = 325/18 = 18 1/18 или 18,056.
Пошаговое объяснение:
5-1,25=3,75