М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Сторона квадрата на 5 см меньше длины прямоугольника и на 3 см больше его ширины. периметр прямоугольника равен 24 см. найдите площадь квадрата. объясните понятно, .

👇
Ответ:
nikitos22813371
nikitos22813371
05.02.2020
Пусть длина прямоугольника а см
ширина прямоугольника b см
сторона квадрата с см
Из условия нам известно, что
с=а-5 см
выразим из этого уравнения а:
а=с+5 см

с=b+3 см
выразим из этого уравнения b:
b=c-3 см

Периметр прямоугольника равен:
2*(а+b)=24
a+b=12
Подставим а и b в уравнение и найдём с:
(с+5) + (с-3) =12
2с+2=12
2с=12-2
2с=10
с=5 см
Площадь квадрата равна c²:
S=5²=25 cм²
ответ: 25 см²
4,7(90 оценок)
Открыть все ответы
Ответ:
Настюля151
Настюля151
05.02.2020
Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1  х₂=2. Можно найти точки пересечения и аналитически, решив уравнение:
х²=х+2
х²-х-2=0
D=(-1)²-4*(-2)=9=3²
x₁=(1-3)/2=-1    x₂=(1+3)/2=2
Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2.
Площадь фигуры, ограниченная графиками функций, находится по формуле
S=∫(f(x)-g(x))dx
В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
S= \int\limits^2_{-1} {(x+2-x^2)} \, dx= \frac{x^2}{2}+2x- \frac{x^3}{3} |_{-1}^2=
= \frac{4}{2}+4- \frac{8}{3}-( \frac{1}{2}-2+ \frac{1}{3})=6- \frac{8}{3}+ \frac{3}{2}- \frac{1}{3}=4,5
ответ: 4,5 ед²
Вычислить площади ограниченные линиями y=x^2 y=x+2
4,7(38 оценок)
Ответ:
sashashola
sashashola
05.02.2020
Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1  х₂=2. Можно найти точки пересечения и аналитически, решив уравнение:
х²=х+2
х²-х-2=0
D=(-1)²-4*(-2)=9=3²
x₁=(1-3)/2=-1    x₂=(1+3)/2=2
Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2.
Площадь фигуры, ограниченная графиками функций, находится по формуле
S=∫(f(x)-g(x))dx
В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
S= \int\limits^2_{-1} {(x+2-x^2)} \, dx= \frac{x^2}{2}+2x- \frac{x^3}{3} |_{-1}^2=
= \frac{4}{2}+4- \frac{8}{3}-( \frac{1}{2}-2+ \frac{1}{3})=6- \frac{8}{3}+ \frac{3}{2}- \frac{1}{3}=4,5
ответ: 4,5 ед²
Вычислить площади ограниченные линиями y=x^2 y=x+2
4,8(34 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ