По условию мы получаем четыре равнобедренных треугольника: АСF, СFЕ, FED, BDE. Углы при основании равнобедренного треугольника равны. Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине. Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как? Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А. И так до конца, т.е до выражения угла А3 через А. Далее составляется уравнение: 2А+А3(выраженное через А)=180. Если все правильно выразите, то должно получиться 9А=360, т.е. А=40. Успехов, дерзайте!
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
109*4 = 436 см - периметр
109*109 = 11881 см2 - площадь