М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Masha200605
Masha200605
30.04.2020 18:31 •  Математика

Для школы пять мотков проволоки .по 56 метров. израсходовали 2/7 провода. сколько метров провода осталось? заранее !

👇
Ответ:
Dufrenb
Dufrenb
30.04.2020
5Х56=280
280Х2/7=80 израсх
осталось 200метров
4,8(62 оценок)
Открыть все ответы
Ответ:
mlpfim2004
mlpfim2004
30.04.2020
Для построения нужны: линейка, чертежный треугольник ( как известно, он имеет форму прямоугольного треугольника), карандаш. 
––––––––––––
Начертите произвольный треугольник - какой Вам нравится. 
К одной из его сторон приложите угольник так, чтобы его катет совпал со стороной нарисованного треугольника - как показано на рисунке, данном в приложении. 
    К стороне угольника - гипотенузе- приложите линейку. Сдвигайте угольник по линейке так, чтобы катет, совпадавший со стороной треугольника, оказался у противоположной той стороне вершине. Чертите по катету прямую. Она будет параллельна стороне. 
Точно так же начертите прямые, параллельные двум другим сторонам треугольника. 
–––––––––––
Таким не сдвигая линейку с места,  можно начертить сколько угодно прямых, параллельных данной. 
4,5(95 оценок)
Ответ:
Ананасяя
Ананасяя
30.04.2020

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

- натуральных чисел 0, 1, 2, 3, 4, ...

- простых чисел

- чётных целых чисел

и т.п. (основные числовые множества рассмотрены в соответствующем параграфе этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a∈M, что означает "a принадлежит множеству M".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb∈VETEROK,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb, syr, maslo},

A = {7, 14, 28}.

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий Пусть p(x) - некоторое высказывание, которое описывает свойства переменной x, областью значений которых является множество M. Тогда через M = {x | p(x)} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p(x) истинно. Это выражение читается так: "Множество M, состоящее из всех таких x, что p(x)".

Например, запись

M = {x | x² - 3x + 2 = 0}

означает множество корней уравнения x² - 3x + 2 = 0, т. е. множество {1, 2}. Это конечное множество.

А следующим описанием задаётся множество всех целых чисел больше 5:

M = {x∈Z | x > 5},

это множество является бесконечным.

Описанием предпочтительно задавать и конечные множества, в которых очень много элементов, например, множество всех натуральных чисел от 2 до 22³:

M = {x∈N | 2< x < 22³}.

Множество, не содержащее ни одного элемента, называется пустым и обозначается знаком ∅.

Множество может состоять из одного элемента. Необходимо различать элемент a и множество {a}, содержащее только один элемент a, хотя бы потому, что допускаются множества, элементы которых сами являются множествами. Например, множество a={2, 1} состоит из двух элементов 2 и 1, а множество {a}, состоит из одного элемента a, который сам является двухэлементным множеством.

Два множества называюся равными, если они состоят из одних и тех же элементов. Например, равны множество равносторонних треугольников и множество равноугольных треугольников, так как это одни и те же треугольники: если в треугольнике все стороны равны, то равны и все его углы. Обратно, из равенства всех трёх углов треугольника вытекает равенство всех трёх его сторон. Равны любые два конечных множетсва, отличающиеся друг от друга только лишь порядком их элементов, например, {a, b, c} = {c, a, b}.

4,8(38 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ