ответ:
-21
пошаговое объяснение:
пусть x_0x
0
— абсцисса точки на графике функции y=-12x^2+bx-10,y=−12x
2
+bx−10, через которую проходит касательная к этому графику.
значение производной в точке x_0x
0
равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3.y
′
(x
0
)=−24x
0
+b=3. с другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2.−12x
0
2
+bx
0
−10=3x
0
+2. получаем систему уравнений \begin{cases} -24x_0+b=-12x_0^2+bx_0-10=3x_0+2. \end{cases}{
−24x
0
+b=3,
−12x
0
2
+bx
0
−10=3x
0
+2.
решая эту систему, получим x_0^2=1,x
0
2
=1, значит либо x_0=-1,x
0
=−1, либо x_0=1.x
0
=1. согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1,x
0
=−1, тогда b=3+24x_0=-21.b=3+24x
0
=−21.
ответ
-21
1) Дан развёрнутый угол AOC. По свойству смежных углов, их сумма равна 180°. Вспомним, что градусная мера развёрнутого угла также равна 180°. Также, дан ∠BOC, градусная мера которого 65° (рассуждать можем несколькими но ответ получится один). Чтобы найти ∠AOB, надо из развёрнутого угла AOC вычесть все известные:
∠AOB = ∠AOC - ∠BOC = 180° - 65° = 115° - градусная мера ∠AOB
ответ: ∠AOB = 115°.
2) Дан прямой угол AOC, помним, что его градусная мера равна 90°, и дан ∠BOC, градусная мера которого равна 20°. Чтобы найти ∠AOB, надо из прямого угла AOC вычесть все известные (в нашем случае один):
∠AOB = ∠AOC - ∠BOC = 90° - 20° = 70° - градусная мера ∠AOB.
ответ: ∠AOB = 70°.
3) Дан развёрнутый угол COD (равен 180°), даны два угла: ∠AOC = 60°; ∠BOD = 50°. Чтобы найти ∠AOB, надо из развёрнутого угла AOC вычесть все известные:
∠AOB = ∠COD - ∠AOC - ∠BOD = 180° - 60° - 50° = 180° - (60° + 50°) = 180° - 110° = 70° - градусная мера ∠AOB.
ответ: ∠AOB = 70°.