ответ:
обоснование числовой лотереи рассчитывается с применением теории вероятностей и теории чисел. рассчитав вероятное число выигрышей каждого класса, можно узнать, какой процент от общей суммы доходов должен пойти на выигрыши каждого класса и какова должна быть сумма каждого выигрыша.
общее количество комбинаций в числовой лотерее рассчитывается при формулы: “а номеров из n” = (n)
(a) = n x (n - 1) x (n - 2) x (n - 3) … x [n - (a -1)]
1 x 2 x 3 x 4 x a
в числовой лотерее “6 из 49” общее количество комбинаций составляет: “6 из 49” = (49)
(6) = 49 x 48 x 47 x 46 x 45 x 44
1 x 2 x 3 x 4 x 5 x 6 = 13 983 816 комбинаций
вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:
выигрыши 1 класса (за 6 угаданных номеров) :
(6)
(6) х (43)
( 0 ) = 6 х 5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5 х 6 = 1 выигрыш
выигрыши 2 класса (за 5 угаданных номеров) :
(6)
(5) х (43)
( 1 ) = 6 х 5 х 4 х 3 х 2
1 х 2 х 3 х 4 х 5 x 43
1 = 258 выигрышей
выигрыши 3 класса (за 4 угаданных номера) :
(6)
(4) х (43)
( 2 ) = 6 х 5 х 4 х 3
1 х 2 х 3 х 4 x 43 х 42
1 х 2 = 27 090 выигрышей
всего в лотерее “6 из 49”, таким образом, содержится 27 349 выигрышей, т. е. 1 выигрыш приходится на 511 комбинаций.
вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:
выигрыш 1 класса (за 6 угаданных номеров) :
= 13 983 816
1 = 1 на 13 983 816 комбинаций
выигрыш 2 класса (за 5 угаданных номеров) :
= 13 983 816
258 = 1 на 54 200 комбинаций
выигрыш 3 класса (за 4 угаданных номера) :
= 13 983 816
27 090 = 1 на 516 комбинаций
пошаговое объяснение:
Дано: 258х + 2x – 80 = 700 ; 50x +40x = 540.
Доказать: тождество.
Док-во:
1. Рассмотрим первое уравнение.
258х + 2x – 80 = 700 ;
1) Сложив одинаковые переменные (258х и 2х; 700 и 80) получаем следующее:
258х + 2х = 700 + 80.
260х = 780
х = 3.
2) Проверим полученный корень, подставив его в изначальное выражение:
258 * 3 + 2 * 3 - 80 = 700
774 + 6 - 80 = 700
774 - 74 = 700.
700 = 700.
Доказано.
2. Рассмотрим второе тождество.
50x +40x = 540
1) Сложив одинаковые переменные (50х и 40х) получаем следующее:
90х = 540
х = 6.
2) Проверим полученный корень, подставив его в изначальное выражение:
50 * 6 + 40 * 6 = 540.
300 + 240 = 540
540 = 540.
Доказано.
3) Найдем средний балл:
(5 + 4 + 2 + 5 + 5 + 4 + 4 + 5 + 5 + 5) / 10 = 44 / 10 = 4,4.
Найдем медиану набора. Для этого упорядочим набор по возрастанию:
2, 4, 4, 4, 5, 5, 5, 5, 5, 5.
Медиана = (5 + 5) : 2 = 5.
4) Найдем средний балл:
(300000 + 150000 * 3 + 50000 * 40 + 10000) / 45 = 960000 / 10 = 96000.
Медиана = 50000.
Выгоднее использовать среднюю зарплату, так как она больше, чем медиана.
5) ) Найдем средний балл:
(12 + 13 + 14 + 12 + 15 + 16 + 14 + 13 + 11) / 9 = 120 / 9 = 13,3.
Найдем медиану набора. Для этого упорядочим набор по возрастанию:
11, 12, 12, 13, 13, 14, 14, 15, 16.
Медиана = 13.
таблицу не знаю
ответ:
720/49^5
пошаговое объяснение:
так как нам не важно в каком порядке он вычеркивает номера, то шанс вычеркнуть первый номер(любой из шести, так как всего 6 "правильных") равен 6/49, шанс вычеркнуть следующий номер равен 5/49, так как 1 номер мы уже вычеркнули и "правильных" осталось 5, итд.
в итоге ответом будет являться произведение этих вероятностей: 6/49, 5/49, 4/49, 3/49, 2,49