Уравнением: Пусть х купюр одного и другого достоинства было. Значит, десятирублевыми денежными знаками дали 10х рублей, а пятирублевыми - 5х рублей. Всего дали 10х+5х рублей, что по условию равно 525 рублей. Составляем уравнение: 10х+5х=525 15х=525 х=525:15 х=35 денежных знаков каждого достоинства было. 35*10=350 рублей - на такую сумму дали десятирублевых купюр. 35*5=175 рублей - на такую сумму дали пятирублевых купюр.
по действиям: 1) 10+5=15 рублей - сумма одного пяти- и одного десятирублевого денежного знака. 2) 525:15=35 денежных знаков - каждого достоинства было. 3) 35*5=175 рублей - на такую сумму дали пятирублевых денежных знаков. 4) 35*10=350 рублей - на такую сумму дали десятирублевых денежных знаков.
Рассмотрим последовательность: f(n)=6n+5. Очевидно, что при натуральном n значения последовательности в точности числа, которые при делении на 6 дают в остатке 5. Заметим, что f(16)=101 - наименьшее трехзначное число которое сравнимо с 5 по модулю 6. Дале заметим что f(165)=995 - наибольшее трехзначное число, которое имеет остаток 5. Все, что осталось это найти конечную сумму f(n) от n = 16..165. 6*16+5+6*17+5+...+(6*165+5)=6*(16+17+..+165)+(165-16)*5. Вспомним формулу сумму арифметической прогрессии, получаем 6*13575+745=82195. Это и есть ответ.
1 тетрадь = x
1 книга = x+80
x+(x+80)=120
x+80 = 120-x
x+x = 120-80
2x=40
x=40:2
x=20
1 тетрадь = x = 20
1 книга = x+80 = 20+80=100
3 книги = 100*3 = 300
5 тетрадей = 5*20 = 100
3 книги и 5 тетрадей = 300+100 =400