Арифметическое решение довольно запутанное, но задача решается просто, если обратиться к услугам алгебры и составить уравнение. Искомое число лет обозначим буквой х. Возраст спустя три года надо тогда обозначить через х + 3, а возраст три года назад — через х -3. Имеем уравнение: 30*(х + 3) – (х-3) = х, решив которое, получаем х = 18. Любителю головоломок теперь 18 лет. Проверим: через три года ему будет 21 год; три года назад ему было 15 лет. Разность 3 х 21 – 3 х 15 = 63 – 45 = 18, то есть равна нынешнему возрасту любителя головоломок.
Рассмотрим треугольник ABC. AB=7, BC=15. DE=10 - средняя линия, поэтому BC=20. Далее, по теореме косинусов, находим косинус угла между хордами из точки A: cos∠A = (7²+15²-20²)/(2*7*15)=-3/5 Теперь рассмотрим угол, который лежит по другую сторону от хорды BC. Поставим по другую сторону от этой хорды точку A'. Тогда ∠A' = 180°-∠A. Поэтому cos∠A' = -cos∠A=3/5, sin∠A'=sin∠A=√(1-(-3/5)²)=4/5. Центральный угол BOC равен удвоенному углу A': ∠ABOC=2∠A'. sin(∠BOC) = 2*sin∠A' * cos∠A' = 2 * 4/5 * 3/5 = 24/25. Тогда, из теоремы синусов, BC = 2R*sin(∠BOC) = D*sin(∠BOC), откуда D = 20/(24/25) = 125/6.