1) 67*32*46= 67*(32*46)
(138*28)*52 = 138*(28*52)
452*43*12 =113*86*24
94*(17*23) =17*94*23
374*(37*53)=187*106*(93-56)
2) 138*(28+52) =138*20*4
264*127*8=127*(264*8)
пояснение.
сначала посчитаем количество кубиков с одной окрашенной гранью. таких кубиков будет 10 · 4 + 4 · 2 = 48. теперь посчитаем количество кубиков с двумя окрашенными гранями. чтобы кубики не повторялись, посчитаем количество таких кубиков на одной грани параллелепипеда с большей площадь и умножим это количество на 2. после этого посчитаем количество кубиков с двумя окрашенными гранями на грани параллелепипеда с меньшей площадью, исключая те кубики, которые прилегают к грани параллелепипеда с большей площадью и умножим это количество на 2. таким образом, кубиков с двумя окрашенными гранями будет 14 · 2 + 4 · 2 = 36. значит, всего получилось 48 + 36 = 84 кубика.
ответ: 84.
Максимально возможная суммарная площадь обзора
Sобщ.=216.6046 ед.²
Пошаговое объяснение:
Поскольку в задании чётко не ограничен минимальный радиус обзора охотников, то примем его за 0 (охотник уснул).
Площадь обзора каждого из охотников представляет собой круг.
Формула площади круга:
S=πR².
Как видно из формулы площади круга, зависимость от радиуса обзора - квадратичная. Это говорит о том, что для получения максимальной площади обзора, лучше получить один максимально большой круг и два оставшихся небольших, чем два одинаковых и один поменьше или три примерно одинаковых круга. Справедливость этого утверждения подтверждает форма графика квадратичной параболы, и понимание того, что при суммировании площадей мы выполняем "линейную" операцию.
Для того, чтобы определить максимальный круг обзора, нам нужно вычислить расстояния между точками, в которых расположены охотники. Для удобства обозначим точки буквами А(4;9), В(5;1); С(12;7).
Найдем АВ: 
Найдем АС: 
Найдем ВС: 
Значит "отдаем приоритет" охотнику в точке С, т.к. два самых длинных расстояния АС и ВС связаны с этой точкой. Охотника в точке А - "усыпляем", т.е. даём ему радиус обзора, равный 0, при этом он вырождается в точку с площадью, равной нулю.
Радиус обзора охотника в точке С принимаем равным АС, иначе если его принять бОльшим, то в площадь обзора включится точка А, что равносильно пересечению участков охотников.
Тогда получаем три площади обзора с радиусами:
0; АС; (ВС-АС)
Вычислим эти площади.
Для точки А: Sa=0 ед.²
Для точки С: Sc=π*АС²=213,6283 ед.²
Для точки В: Sb=π*(BC-АС)²=2.9763 ед.²
Sобщ.=0+213,6283+2,9763=216.6046 ед.²
На рисунке прилагаю 3 возможных варианта обзоров охотников из которых только последний (крайний справа) - правильный.
67*32*46= 67*(32*46)
138*(28*52)=(138*28)*52
94*(17*23) =17*94*23
2) 452*43*12 = 43*12*452
138*(28+52)= 138*28+138*52
374*(37*53)=(374*37)*53
113*86*24= 86*113*24
264*127*8= 8*264*127
187*106*(93-56)= 187* (106*93-106*56)