В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение:
Пусть х руб. стоит пальто, тогда туфли стоят 2/7х. Вся покупка 126 руб.
Уравнение: х + 2/7х = 126
1 2/7х = 126
х = 126 : 1 2/7 = 126 : 9/7
х = 126 * 7/9 = 14 * 7 = 98 (руб.) - стоит пальто
2/7 * 98 = 98 : 7 * 2 = 28 (руб.) - стоят туфли
ответ: 28 руб. стоят туфли; 98 руб. стоит пальто.