cos(α+β)+2sinαsinβ=cosαcosβ−sinαsinβ+2sinαsinβ=
cosαcosβ+sinαsinβ=cos(α−β)
если \alpha -\beta=\piα−β=π , то cos(\alpha -\beta ) =cos\pi =-1.cos(α−β)=cosπ=−1.
б)
\frac{sin^{2}\alpha +sin(\pi-\alpha)cos (\frac{\pi }{2} -\alpha) }{tq(\pi+\alpha)ctq( \frac{3\pi }{2} -\alpha ) } = \frac{sin^{2}\alpha +sin\alpha*sin\alpha }{tq\alpha*tq\alpha } =\frac{2sin^{2} \alpha }{tq^{2} \alpha } =\frac{2sin^{2}\alpha }{\frac{sin^{2} \alpha }{cos^{2} \alpha } } =2cos^{2} \alpha .
tq(π+α)ctq(
2
3π
−α)
sin
2
α+sin(π−α)cos(
2
π
−α)
=
tqα∗tqα
sin
2
α+sinα∗sinα
=
tq
2
α
2sin
2
α
=
cos
2
α
sin
2
α
2sin
2
α
=2cos
2
α.
в)
cos7xcos6x+sin7xsin6x=cos(7x-6x)=cosx.cos7xcos6x+sin7xsin6x=cos(7x−6x)=cosx.
объем масла в 5-литровых банках может заканчиваться либо цифрой 0 (четное число банок), либо цифрой 5 (нечетное число банок).
Нам нужно, чтобы общая сумма литров оканчивалась цифрой 6.
Объем масла в семилитровых банках заканчивается цифрой 1 (5+1=6), если банок 3, 13, 23, и т.д. и заканчивается цифрой 6 (0+6=6), если банок 8, 18, 28 и т.д.
Получаем два варианта:
1) (2k) 5-литровых банок + (10m+8) 7-литровых
5*2k+7*(10m+8)=106 => 10k+70m+56=106 => 10k+70m=50. Мы работаем с натуральными числами, поэтому единственное решение: m=0, k=5.
Итого 10 5-литровых банок + 8 7-литровых
2) (2k+1) 5-литровых банок + (10m+3) 7-литровых
5*(2k+1)+7*(10m+3)=106 => 10k+5+70m+21=106 => 10k+70m=80. Тут есть два решения: m=0, k=8; m=1, k=1.
Итого 17 5-литровых банок + 3 7-литровых
и 3 5-литровых банки + 13 7-литровых