Пошаговое объяснение:1) f(x)= 2x²-3x+1 , [-1;1] ⇒ f'(x)= 4x-3, найдём критические точки: 4х-3=0, ⇒ х = 3/4=0,75 ∈[-1;1]. Найдём значения функции в критической точке и на концах данного промежутка: f(3/4)= 2·(3/4)²- 3·3/4 +1 =9/8 -9/4 + 1 = -1/8 ; f(1) = 0; f(-1)=6 ⇒ max f(x)=f(-1)=6; minf(x)=f(3/4)=-1/8
2)f(x)=3x²-4 на [2;4] ⇒ f'(x)=6x 6x=0, x=0-крит. точка, но x=0∉ [2;4] ⇒ Найдём значения функции на концах данного промежутка: f(2)= 3·2²-4= 12-4=8 f(4)=3·4² - 4= 48-4=44 ⇒ max f(x)=f(-4)=44; minf(x)=f(2)=8 3)f(x)=x²-1 на [0;3]⇒ f'(x)=2x , 2x=0 x=0 -критическая точка х=0 ∈ [0;3]. Найдём значения функции в критической точке и на концах данного промежутка: f(0) =0²-1=-1; f(3)=3²-1=8 ⇒max f(x)=f(3)=8; minf(x)=f(0)= -1
Пошаговое объяснение:
1) 4x²+x-3=0, D=1+48=49, 49>0 ⇒ квадратное уравнение имеет два корня.
Согласно теореме Виета:
x₁+x₂=-1/4; -4/4 +3/4=-1/4
x₁·x₂=-3/4; -4/4 ·3/4=-3/4
x₁=-4/4; x₁=-1
x₂=-3/4; x₂=0,75
ответ: -1; 0,75.
2) x²+12x+20=0
Согласно теореме Виета:
x₁+x₂=-12; -10+(-2)=-12
x₁·x₂=20; -10·(-2)=20
x₁=-10; x₂=-2
ответ: -10; -2.
3) x²-4x-12=0
Согласно теореме Виета:
x₁+x₂=4; -2+6=4
x₁·x₂=-12; -2·6=-12
x₁=-2; x₂=6
ответ: -2; 6.
4) x²+x-6=0
Согласно теореме Виета:
x₁+x₂=-1; -3+2=-1
x₁·x₂=-6; -3·2=-6
x₁=-3; x₂=2
ответ: -3; 2.
5) 2x²-9x+10=0; D=81-80=1; 1>0 ⇒ квадратное уравнение имеет два корня.
Согласно теореме Виета:
x₁+x₂=9/2; x₁+x₂=4,5; 2+2,5=4,5
x₁·x₂=10/2; x₁·x₂=5; 2·2,5=5
x₁=2; x₂=2,5
ответ: 2; 2,5.