Куб натурального числа n можно представить в виде n слагаемых, образующих арифметическую прогрессию с разностью 2.
Доказательство:
Если n — число нечётное:
Пусть средний член равен n². Тогда сумма членов этой прогрессии равна n² + n² - 2 + n² + 2 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Если n — число чётное:
Пусть средние члены (по счёту n/2 и n/2 + 1) равны n²-1 и n²+1. Сумма членов прогрессии равна: n² - 1 + n² + 1 + n² - 3 + n² + 3 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Во всех возможных случаях мы смогли представить куб натурального числа в виде n слагаемых, что и требовалось доказать.
х+42 - длина
(х+х+42)*2 - периметр
320м=32000см
(2х+42)*2=32000
4х+84=32000
4х=32000-84
4х=31916
х=7979см - ширина
7979+42=8021 см - длина
7979*8021 = 63999559 см.кв. -площадь