-3,5+3/8+(-0,75)+1целая1/4+(-6целых 7/8)=-3целых1/2+3/8+(-3/4)+1целая1/4+6целых 7/8=-4/2+3/8+(-3/4)+5/4+55/8=-16/8+3/8+(-6/8)+10/8+55/8=46/8=5целых6/8=5целых3/4 =5,75 ну вроде всё ТАК
задачи на вероятность можно решать по формулам и не понимать их а можно один раз понять и тогда формулы будут ненужны можете изучить мое решение и применить к нему формулы числовые ответы - правильные на 100%
первая деталь окажется бракованной в случае если первая деталь с первого автомата с вероятностью 0,8 она бракованная с вероятностью 0,01 или первая деталь с второго автомата с вероятностью 0,2 она бракованная с вероятностью 0,04 итого вероятность что первая взятая деталь бракованная 0,8*0,01+0,2*0,04 аналогично получаем вероятность что вторая взятая деталь бракованная 0,8*0,01+0,2*0,04 тогда вероятность что обе детали бракованные (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04)= 0,000256 - ответ на первый вопрос теперь рассмотрим случай что бракованные детали изготовлены исключительно на первом автомате это значит что дважды с вероятностью 0,8 деталь была от первого автомата и каждый раз с вероятностью 0,01 попалась бракованная из всех деталей этого автомата вероятность такого события (0,8*0,01)*(0,8*0,01)= 0,000064 теперь посмотрим, каков вклад этой вероятности в вероятность что выбранные две детали оказались бракованными. (0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25 - искомый ответ 2 задания
произошло событие А вероятность которого оценивается как Р(А)=(0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) вероятность того что это событие произошло именно по интересующему нас алгоритму Р(В)=(0,8*0,01)*(0,8*0,01) тогда условная вероятность (вероятность что произошло событие В при условии что состоялось событие А равна Р(В|А) =Р(В)/Р(А)=(0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25
задачи на вероятность можно решать по формулам и не понимать их а можно один раз понять и тогда формулы будут ненужны можете изучить мое решение и применить к нему формулы числовые ответы - правильные на 100%
первая деталь окажется бракованной в случае если первая деталь с первого автомата с вероятностью 0,8 она бракованная с вероятностью 0,01 или первая деталь с второго автомата с вероятностью 0,2 она бракованная с вероятностью 0,04 итого вероятность что первая взятая деталь бракованная 0,8*0,01+0,2*0,04 аналогично получаем вероятность что вторая взятая деталь бракованная 0,8*0,01+0,2*0,04 тогда вероятность что обе детали бракованные (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04)= 0,000256 - ответ на первый вопрос теперь рассмотрим случай что бракованные детали изготовлены исключительно на первом автомате это значит что дважды с вероятностью 0,8 деталь была от первого автомата и каждый раз с вероятностью 0,01 попалась бракованная из всех деталей этого автомата вероятность такого события (0,8*0,01)*(0,8*0,01)= 0,000064 теперь посмотрим, каков вклад этой вероятности в вероятность что выбранные две детали оказались бракованными. (0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25 - искомый ответ 2 задания
произошло событие А вероятность которого оценивается как Р(А)=(0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) вероятность того что это событие произошло именно по интересующему нас алгоритму Р(В)=(0,8*0,01)*(0,8*0,01) тогда условная вероятность (вероятность что произошло событие В при условии что состоялось событие А равна Р(В|А) =Р(В)/Р(А)=(0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25
ну вроде всё ТАК